102 resultados para Isolating mechanisms
Resumo:
TX01, a pathogenic Edwardsiella tarda strain isolated from diseased fish at an epidemic-inflicted fish farm in China, exhibits resistance to multiple classes of antimicrobial agents. The genes (kn(R). catA3, and tet(A), respectively) encoding resistance to kanamycin, chloramphenicol, and tetracycline were cloned and found to be 99-100% identical to the corresponding genes carried by known plasmids and transposons of human, animal, and environmental isolates. Further study demonstrated that TX01 harbors a plasmid, pETX, which proved to be (i) the carrier of the tet and cut operons; (ii) a mobile genetic element that is capable of transferring between bacteria of different genera. These results, which, to our knowledge, documented for the first time the co-existence of chloramphenicol and tetracycline resistance determinants on a conjugative plasmid in a pathogenic E tarda strain, indicated that gene acquisition via horizontal transferring of pETX-like mobile genetic entities may have played an important part in the dissemination of antimicrobial resistance and that there have existed for some time widespread genetic exchanges between bacteria of human, animal/fish, and environmental origins. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B-2 (TXB2) and 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA (P < 0.01) and increasing the synthesis of 6-keto-PGF(1 alpha), thus changing the plasma TXB2/6-keto-PGF(1 alpha) balance when the platelets were activated (P < 0.01). Therefore, STP altered AA metabolism and these findings
Resumo:
Based on the latest seismic and geological data, tectonic subsidence of three seismic lines in the deepwater area of Pearl River Mouth Basin (PRMB), the northern South China Sea (SCS), is calculated. The result shows that the rifting process of study area is different from the typical passive continental margin basin. Although the seafloor spreading of SCS initiated at 32 Ma, the tectonic subsidence rate does not decrease but increases instead, and then decreases at about 23 Ma, which indicates that the rifting continued after the onset of seafloor spreading until about 23 Ma. The formation thickness exhibits the same phenomenon, that is the syn-rift stage prolonged and the post-rift thermal subsidence delayed. The formation mechanisms are supposed to be three: (1) the lithospheric rigidity of the northern SCS is weak and its ductility is relatively strong, which delayed the strain relaxation resulting from the seafloor spreading; (2) the differential layered independent extension of the lithosphere may be one reason for the delay of post-rift stage; and (3) the southward transition of SCS spreading ridge during 24 to 21 Ma and the corresponding acceleration of seafloor spreading rate then triggered the initiation of large-scale thermal subsidence in the study area at about 23 Ma.
Resumo:
We explore control mechanisms underlying the vertical migration of zooplankton in the water column under the predator-avoidance hypothesis. Two groups of assumptions in which the organisms are assumed to migrate vertically in order to minimize realized or effective predation pressure (type-I) and to minimize changes in realized or effective predation pressure (type-II), respectively, are investigated. Realized predation pressure is defined as the product of light intensity and relative predation abundance and the part of realized predation pressure that really affects organisms is termed as effective predation pressure. Although both types of assumptions can lead to the migration of zooplankton to avoid the mortality from predators, only the mechanisms based on type-II assumptions permit zooplankton to undergo a normal diel vertical migration (morning descent and evening ascent). The assumption of minimizing changes in realized predation pressure is based on consideration of DVM induction only by light intensity and predators. The assumption of minimizing changes in effective predation pressure takes into account, apart from light and predators also the effects of food and temperature. The latter assumption results in the same expression of migration velocity as the former one when both food and temperature are constant over water depth. A significant characteristic of the two type-II assumptions is that the relative change in light intensity plays a primary role in determining the migration velocity. The photoresponse is modified by other environmental variables: predation pressure, food and temperature. Both light and predation pressure are necessary for organisms to undertake DVM. We analyse the effect of each single variable. The modification of the phototaxis of migratory organisms depends on the vertical distribution of these variables. (C) 2001 Academic Press.
Resumo:
Different mechanisms for the formation of acetaldehyde and ethanol on the Rh-based catalysts were investigated by the TPR (temperature programmed reaction) method, and the active sites were studied by CO-TPD, TPSR (temperature programmed surface reaction of preadsorbed CO by H-2) and XPS techniques. The TPR results indicated that ethanol and acetaldehyde might be formed through different intermediates, whereas ethanol and methanol might result from the same intermediate. Results of CO-TPD, TPSR, and XPS showed that on the Rh-based catalyst, the structure of the active sites for the formation of C-2-oxygenates is ((RhxRhy+)-Rh-0)-O-Mn+ (M=Mn or Zr, x>>y, 2 less than or equal ton less than or equal to4). The tilt-adsorbed CO species is the main precursor for CO dissociation and the precursor for the formation of ethanol and methanol. Most of the linear and geminal adsorbed CO species desorbed below 500 K. Based on the suggested model of the active sites, detailed mechanisms for the formation of acetaldehyde and ethanol are proposed. Ethanol is formed by direct hydrogenation of the tilt-adsorbed CO molecules, followed by CH2 insertion into the surface CH2-O species and the succeeding hydrogenation step. Acetaldehyde is formed through CO insertion into the surface CH3-Rh species followed by hydrogenation, and the role of the promoters was to stabilize the intermediate of the surface acetyl species. (C) 2000 Academic Press.