93 resultados para INDIUM-OXIDE NANOPARTICLES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO nanowires, nanorods and nanoparticles through modulating the ratio of water to methanol have been synthesized by using a mild and simple solution method. The as-prepared ZnO nanostructures have been characterized by atomic force microscopy and X-ray photoelectron spectroscopy. With the increase of the ratio of water to methanol, the morphology of ZnO nanostructures varied form denser nanowires, to sparse nanowires, to nanorods, and then to nanoparticles. The ratio of water to methanol is supposed to play an important role in the formation of ZnO nanostructures. The mechanism of formation is related to the chemical potential, which is simply proportional to their surface ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a method for highly ordered assembly of cuprous oxide (Cu2O) nanoparticles (NPs) by DNA templates was reported. Cetyltrimethylammonium bromide (CTAB)-capped Cu2O NPs were adsorbed onto well-aligned lambda-DNA chains to form necklace-like one-dimensional (1D) nanostructures. UV-vis, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the nanostructure. The Cu2O nanostructures fabricated with the method are both highly ordered and quite straight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behavior of alpha-Keggin-type nanoparticles, Co(en)(3)(PMo12O40) (abbreviated as PMo12-Co), have been studied in poly(ethylene glycol) for four different molecular weights (PEG, average MW 400, 600, 1000, and 2000 g mol(-1)) and containing LiClO4 (O/Li=100/1) supporting electrolyte. The diffusion coefficients of the PMo12-Co nanoparticles were determined using a microelectrode by chronoamperometry for PEG of different molecular weights that were used to describe the diffusion behavior of PMo12-Co nanoparticles in different phase states. Moreover, the conductivity of the composite system increases upon addition of PMo12-Co nanoparticles, which was measured by an a.c. impedance technique. FT-IR spectra and DSC were used to follow the interactions of PEG-LiClO4-PMo12-Co, and well described the reason that the PMo12-Co nanoparticles could promote the conductivity of the PEG-LiClO4-PMo12-Co system.