108 resultados para Hydraulic motors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文所介绍的水下机械手液压控制系统为一典型的具有变回油压力封闭式系统。文中阐述了此种系统液压动力机构的设计原理及静、动态参数的分析计算方法。对于在变回油压力下,由四通阀控制的非对称油缸的静态特性进行了详细的分析。给出了在不同回油压力下,不同面积比的非对称油缸、阀的负载压降及最大空载流量的变化规律。这对于确定水下机械手的液压动力机构的参数提供了依据。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

介绍了长焊缝激光拼焊系统的工作原理和控制要求。针对长焊缝激光拼焊的难点,提出了焊缝塑性成形原理,采用碾压轮对板材焊缝进行碾压预处理提高定位精度。阐述了牵引电机同步控制原理和碾压轮力控制原理。详细介绍了该系统的组成和工作原理,确定了以三菱PLC为核心的长焊缝激光拼焊的控制系统,说明了其硬件组成、软件设计和控制系统的抗干扰措施。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

根据数字液压驱动单元的运行原理,分析了在空载与加载情况下该数字驱动单元的内部液体流动状态,并以这一流动状态原理为依据,改进设计了传统的液控单向阀。数字液压驱动单元样机及试验结果表明:该数字液压驱动单元与应用传统液控单向阀体的驱动单元相比,具有更加紧凑的体积、更高的响应速度及运行可靠性和显著的节能效果。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layer’s TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHA’s structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHA’s structure parameters and deflection rate, especially the key factors’ effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Yaoyingtai Block is located within the northeastern Changling Depression of southern Songliao Basin, where the reservoir sandstones are petrophysically characterized by very low permeability, which results in the low success probability of artificial fracturing, and the low oil yield by water injection in the course of oil production. In order to improve the situations as stated above, this research aims to work out an integral fracturing technology and strategy applicable to the low permeable reservoirs in Yaoyingtai Block. Under the guidance of geological theory, reservoir engineering and technology, the subsurface occurrences of natural and hydraulic fractures in the reservoirs are expected to be delineated, and appropriate fracturing fluids and proppants are to be optimized, based on the data of drilling, well logging, laboratory and field experiments, and geological data. These approaches lay the basis of the integral fracturing technology suitable for the low permeable reservoir in the study area. Based on core sample test, in-situ stress analysis of well logging, and forward and inversion stress field modeling, as well as fluid dynamic analysis, the maximum in-situ stress field is unraveled to be extended nearly along the E-W direction (clustering along N85-135°E) as is demonstrated by the E-W trending tensional fractures. Hydraulic fractures are distributed approximately along the E-W direction as well. Faulting activities could have exerted obvious influences on the distribution of fractures, which were preferentially developed along fault zones. Based on reservoir sensitivity analysis, integrated with studies on rock mechanics, in-situ stress, natural fracture distribution and production in injection-production pilot area, the influences of primary fractures on fracturing operation are analyzed, and a diagnostic technology for primary fractures during depressurization is accordingly developed. An appropriate fracturing fluid (hydroxypropyl guar gum) and a proppant (Yixing ceramsite, with a moderate-density, 0.45-0.9mm in size) applicable to Qingshankou Formation reservoir are worked out through extensive optimization analysis. The fracturing fluid can decrease the damage to the oil reservoir, and the friction in fracturing operation, improving the effect of fracturing operation. Some problems, such as sand-out at early stage and low success rate of fracturing operations, have been effectively solved, through pre-fracturing formation evaluation, “suspension plug” fracturing, real-time monitoring and limited-flow fracturing. Through analysis of fracture-bearing tight reservoir with variable densities and dynamic analysis of influences of well patterns on fracturing by using numerical simulation, a fracturing operation scheme for the Qingshankou Formation reservoir is proposed here as being better to compress the short factures, rather than to compress the long fractures during hydraulic fracturing. It is suggested to adopt the 450m×150m inverted 9-spot well pattern in a diamond shape with wells placed parallel to fractures and a half fracture length of 60-75m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luo Ning ( Mineralogy, Petrology, Deposit Mineralogy) Directed by Fu Liyun With the increase of the level of exploration and development, North China field, as one of the maturing fields in the east, has gradually turned their prospecting targets to frontiers such as deep zones, lithologic hydrocarbon reservoirs, low permeable layers, special lithostromes, etc, which propose new challenges to mating technique of exploration engineering. In it, the special lithostrome of clay carbonate in Shu-Lu cave in Middle Flank exploration area locates in Es_3 generating rock. The area distribution is large, formation thickness is over 100 meters, the oil accumulation condition is excellent, prognostic reserves is over 80,000,000 tons, but how to effectively stimulate the special low permeable and fractured reservoir has become the bottle neck problem of stimulation and stable yields. In this thesis, through comprehensive evaluation and analysis of lithology, lithomechanics, hydrocarbon reservoir characteristics, the characteristics of fluid flow through porous medium and the stimulation measures in the past, we acquire new cognition of clay carbonate reservoirs, in addition, the research and application of first hydraulic fracturing has gained positive effect and formed commensurable comprehensive reservoir evaluation technique and mating engineering technique of hydraulic fracturing. The main cognitions and achievements are as follows: 1.Study of geological information such as lithololy analysis and nuclear magnetic logging, etc, indicates that clay carbonate formation of Shu-Lu cave is anisotropic, low permeable with high shale content, whose accumulation space gives priority to microcracks. 2.The analysis of lithomechanics of clay carbonate indicates that the hardness is moderate, Young’s modulus is between that of sandstone and limestone, clay carbonate presents plastic property and its breakdown pressure is high because of the deep buried depth. 3.The analysis of the drillstem test curves indicates that the flow and build-up pressure curve of clay carbonate of Shu-Lu cave mainly has three types: formation contamination block-up type, low permeable type, formation energy accumulation slowness type; the reservoir characteristics presents double porosity media, radial compounding, uniform flow vertical fracture, isotropy, moniliform reservoir type. The target well Jingu 3 belongs to moniliform reservoir type. 4.Through recognition and re-evaluation of the treatment effect and technologic limitations of acidizing, acid fracturing and gelled acidizing in the past, based on the sufficient survey and study of hydraulic fracturing home and abroad, combined with comprehensive formation study of target well, we launched the study of the optimization of hydraulic fracturing technique, forming the principal clue and commensurable mating technology aimed at clay carbonate formation, whose targets are preventing leak off, preventing sand bridge, preventing embedment, controlling fracture height, forming long fracture. 5. Recognition of stimulation effect evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migration carriers act as the “Bridges” connecting source rock and traps and play important roles in petroleum migration and accumulation system. Among various types of carriers, sandstone carrier constitutes the basis of carrier system consisting of connected sandstone bodies, of sand-bodies connected with other carriers, such as faults and/or unconformities. How do we understand sandstone carrier beyond the traditional reservoirs concept? How could we characterize quantitatively this kind of carriers for petroleum migration? Such subjects are important and difficult contents in dynamic studies on hydrocarbon migration and accumulation. Sandstone carrier of Chang 8 member in Longdong area of Ordos Basin is selected as the research target in this thesis. Through conducting integrated reservoir analysis on many single wells, the correlation between single sandstone thickness and oil thickness seems good. Sketch sandstone is defined in this thesis as the principal part of carrier based on systematical analysis on lithology and sandstone thickness. Geometry connectivity of sandstone bodies was identified by the spatial superposition among them and was proved by the oil property features in oilfields. The connectivity between sandstone carriers is also hydrodynamically studied by observing and analyzed various diagenetic phenomena, especially the authigenic minerals and their forming sequence. The results were used to characterize transporting capability of sandstone carriers during the key petroleum migration periods. It was found that compaction and cementation are main causes to reduce pore space, and resolution may but not so importantly increases pore space after the occurrence of first migration. The cements of ferrocalcite and kiesel seem like the efficient index to demonstrate the hydraulic connection among sandy bodies. Diagenetic sequence and its relationship with petroleum migration phases are analyzed. Sandstone carrier of Chang 8 member was then characterized by studying their pore space and permeable properties. The results show an average porosity and permeability of Chang 8 carriers are respectively 8% and 0.50md, belongs to low porosity - low permeability reservoirs. Further, the physical properties of Chang 81 member are commonly better than those of Chang 82 member. Methods to reconstruct property of sandstone carrier during petroleum migration phase (late Jurassic) are built based on diagenetic sequence. Planal porosity, porosity and permeability of sandstone carrier in this period are statistically analyzed. One combining index - product of thickness and ancient porosity - is selected as the idea parameter to characterize sandstone carrier of late Jurassic after contrast with other parameters. Reservoirs of Chang 8 member in Longdong area are lithological reservoir controlled by sand body in which oil layers in middle part are clamped with dry layers in upper and lower parts, in a sandwich way. Based a newly proposed “migration-diagensis-remigration” model in low permeability sandstone of Chang 8 member in Longdong area, oil migration and accumulation processes during different periods are simulated with the reconstructed sandstone carriers system. Results match well with current reservoir distributions. Finally, suggestions for next favorable exploration areas are given based on all research achievements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluating the mechanical properties of rock masses is the base of rock engineering design and construction. It has great influence on the safety and cost of rock project. The recognition is inevitable consequence of new engineering activities in rock, including high-rise building, super bridge, complex underground installations, hydraulic project and etc. During the constructions, lots of engineering accidents happened, which bring great damage to people. According to the investigation, many failures are due to choosing improper mechanical properties. ‘Can’t give the proper properties’ becomes one of big problems for theoretic analysis and numerical simulation. Selecting the properties reasonably and effectively is very significant for the planning, design and construction of rock engineering works. A multiple method based on site investigation, theoretic analysis, model test, numerical test and back analysis by artificial neural network is conducted to determine and optimize the mechanical properties for engineering design. The following outcomes are obtained: (1) Mapping of the rock mass structure Detailed geological investigation is the soul of the fine structure description. Based on statistical window,geological sketch and digital photography,a new method for rock mass fine structure in-situ mapping is developed. It has already been taken into practice and received good comments in Baihetan Hydropower Station. (2) Theoretic analysis of rock mass containing intermittent joints The shear strength mechanisms of joint and rock bridge are analyzed respectively. And the multiple modes of failure on different stress condition are summarized and supplied. Then, through introducing deformation compatibility equation in normal direction, the direct shear strength formulation and compression shear strength formulation for coplanar intermittent joints, as well as compression shear strength formulation for ladderlike intermittent joints are deducted respectively. In order to apply the deducted formulation conveniently in the real projects, a relationship between these formulations and Mohr-Coulomb hypothesis is built up. (3) Model test of rock mass containing intermittent joints Model tests are adopted to study the mechanical mechanism of joints to rock masses. The failure modes of rock mass containing intermittent joints are summarized from the model test. Six typical failure modes are found in the test, and brittle failures are the main failure mode. The evolvement processes of shear stress, shear displacement, normal stress and normal displacement are monitored by using rigid servo test machine. And the deformation and failure character during the loading process is analyzed. According to the model test, the failure modes quite depend on the joint distribution, connectivity and stress states. According to the contrastive analysis of complete stress strain curve, different failure developing stages are found in the intact rock, across jointed rock mass and intermittent jointed rock mass. There are four typical stages in the stress strain curve of intact rock, namely shear contraction stage, linear elastic stage, failure stage and residual strength stage. There are three typical stages in the across jointed rock mass, namely linear elastic stage, transition zone and sliding failure stage. Correspondingly, five typical stages are found in the intermittent jointed rock mass, namely linear elastic stage, sliding of joint, steady growth of post-crack, joint coalescence failure, and residual strength. According to strength analysis, the failure envelopes of intact rock and across jointed rock mass are the upper bound and lower bound separately. The strength of intermittent jointed rock mass can be evaluated by reducing the bandwidth of the failure envelope with geo-mechanics analysis. (4) Numerical test of rock mass Two sets of methods, i.e. the distinct element method (DEC) based on in-situ geology mapping and the realistic failure process analysis (RFPA) based on high-definition digital imaging, are developed and introduced. The operation process and analysis results are demonstrated detailedly from the research on parameters of rock mass based on numerical test in the Jinping First Stage Hydropower Station and Baihetan Hydropower Station. By comparison,the advantages and disadvantages are discussed. Then the applicable fields are figured out respectively. (5) Intelligent evaluation based on artificial neural network (ANN) The characters of both ANN and parameter evaluation of rock mass are discussed and summarized. According to the investigations, ANN has a bright application future in the field of parameter evaluation of rock mass. Intelligent evaluation of mechanical parameters in the Jinping First Stage Hydropower Station is taken as an example to demonstrate the analysis process. The problems in five aspects, i. e. sample selection, network design, initial value selection, learning rate and expected error, are discussed detailedly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Xinli mine area of Sanshandao mine is adjacent to the Bohai Sea and its main exploitable ore deposit occurs in the undersea rock mass. The mine is the biggest undersea gold mine of China after production. The mine area faces a latent danger of water bursting, even sudden seawater inrush. There is no mature experience in undersea mining in China so far. The vein ore deposit is located in the lower wall of a fault; its possible groundwater sources mainly include bittern, Quaternary pore water and modern seawater. To ensure the safety of undersea mining, to survey the flooding conditions of the ore deposit using proper measures and study the potential seawater inrush pattern are the key technical problems. With the Xinli mine area as a case study, the engineering geological conditions of the Xinli mine area are surveyed in situ, the regional structural pattern and rock mass framework characteristics are found out, the distribution of the structural planes are modeled by a Monte Carlo method and the connectivity coefficients of rock mass structural planes are calculated. The regional hydro-geological conditions are analyzed and the in-situ hydro-geological investigation and sampling are performed in detail, the hydrochemistry and isotopes testing and groundwater dynamic monitoring are conducted, the recharge, runoff, discharge conditions are specified and the sources of flooding are distinguished. Some indices are selected from the testing results to calculate the proportion of each source in some water discharge points and in the whole water discharge of the Xinli mine area. The temporal and spatial variations of each water source of the whole ore deposit flooding are analyzed. According to the special project conditions in the Xinli mine area, the permeability coefficient tensors of the rock mass in Xinli mine area are calculated based on a fracture geometry measurement method, in terms of the connectivity and a few hydraulic testing results, a modified synthetic permeability coefficient are calculated. The hydro-geological conceptual and mathematical model are established,the water yield of mine is predicted using Visual Modflow code. The spreading law of surrounding rock mass deformation and secondary stress are studied by numerical analysis; the intrinsic mechanism of the faults slip caused by the excavation of ore deposit is analyzed. The results show that the development of surrounding rock mass deformation and secondary stress of vein ore deposit in the lower wall of a fault, is different from that in a thick-big ore deposit. The secondary stress caused by the excavation of vein ore deposit in the lower wall of a fault, is mainly distributed in the upper wall of the fault, one surface subsidence center will occur. The influences of fault on the rock mass movement, secondary stress and hydro-geological structures are analyzed; the secondary stress is blocked by the fault and the tensile stress concentration occurs in the rock mass near the fault, the original water blocking structure is destructed and the permeable structure is reconstructed, the primary structural planes begin to expand and newborn fissures occur, so the permeability of the original permeable structure is greatly enhanced, so the water bursting will probably occur. Based on this knowledge, the possible water inrush pattern and position of the Xinli mine area are predicted. Some computer programs are developed using object-oriented design method under the development platform Visual Studio.Net. These programs include a Monte Carlo simulation procedure, a joint diagrammatizing procedure, a structural planes connectivity coefficient calculating procedure, a permeability tensor calculating procedure, a water chemical formula edit and water source fixture conditions calculating procedure. A new computer mapping algorithm of joint iso-density diagram is raised. Based on the powerful spatial data management and icon functions of Geographic Information System, the pit water discharge dynamic monitoring data management information systems are established with ArcView.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A full understanding of failure mechanism, critical hydrological condition, and process of mobilization and deposition of a landslide is essential for optimal design of stabilization measure and forecasting of landslide hazard. This requires a quantitative study of hydrological response of a slope to rainfall through field monitoring, laboratory test and numerical modelling. At 13:40 on September 18, 2002, a fill slope failed following a period of prolonged rain in Shenzhen, resulting in 5 fatalities and 31 injuries. The failed mass with a volume about 2.5×104m3 traveled about 140m on level ground. Field monitoring, laboratory test, theoretical analysis and numerical modelling were carried out to undestand the hydrological response and failure mechanism of this fill slope. This thesis mainly focuses on the following aspects: (1) The hydrological responses and failure processes of slopes under rainfall infiltration were reviewed. Firstly, the factors influencing on the hydrological responses of slopes were analysed. Secondly, the change of stress state of slope soil and modelling methods of slope failure under rainfall infiltration were reviewed. (2) The characteristics of the Yangbaodi landslide and associated rainfall triggering the failure were presented. The failure was characterized by shallow flowslide, due to an increase of ground water table caused by rainfall infiltration. (3) A fully automated instrumentation was carried out to monitor rainfall, and saturated – unsaturated hydrological response of the fill slope, using a raingauge, piezometers, tensiometers and moisture probes. A conceptual hydrogeological model was presented based on field monitoring and borehole data. Analysis of monitoring data showed that the high pore water pressure in fill slope was caused by upward flow of semiconfined groundwater in the moderately decomposed granite. (4) Laboratory and in-situ testing was performed to study the physical and mechanical properties of fills. Isotropically consolidated undrained compression tests and anisotropically consolidated constant shear stress tests were carried out to understand the failure mechanism of the fill slope. It is indicated that loosely compacted soil is of strain-softening behaviour under undrained conditions, accompanied with a rapid increase in excess pore water pressure. In anisotropically consolidated constant shear stress tests, a very small axial strain was required to induce the failure and the excess pore water pressure increased quickly at failure. This indicated that static liquefaction caused by rise in groundwater table due to rainfall infiltration occurred. (5) The hydraulic conductivity of the highly and moderately decomposed granite was estimated using monitering data of pore water pressure. A saturated – unsaturated flow was modeled to study the hydrological response of the fill slope using rainfall records. It was observed that the lagged failure was due to the geological conditions and the discrepancy of hydraulic conductivity of slope soils. The hydraulic conductivity of moderately decomposed granite is relatively higher than the other materials, resulting in a semiconfied groundwater flow in the moderately decomposed granite, and subsequent upward flow into the upper fill layer. When the ground water table in the fill layer was increased to the critical state, the fill slope failed. (6) Numerical exercises were conducted to replay the failure process of the fill slope, based on field monitoring, laboratory and in-situ testing. It was found that the fill slope was mobilized by a rapid transfer of the concentrated shear stress. The movement of failure mass was characterized by viscosity fluid with a gradual increase in velocity. The failure process, including mobilization and subsequent movement and deposition, was studied using numerical methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrochemistry, isotope and CFCs were used to determine groundwater transport in the eastern part of the Guanzhong Basin. In this paper, we systematically collected water samples and measured major ions, 2H-18O and CFCs in surface water and shallow groundwater. Groundwater in this region can be divided into three categories based on total dissolved solids (TDS): fresh water with TDS < 1g/L, brackish water with TDS between 1~3g/L, and saline water with TDS > 3g/L. Saline water is mainly located in the north of the Wei River, and saline groundwater is not in the south. Tributaries in the south of the Wei River and underlain groundwater had similar 2H-18O values, indicating a close hydraulic connection between them. Tributaries in the north of the Wei River characterized certain extent of evaporation, and 2H-18O values deviated to a differing extent between surface water and groundwater, indicating that surface water in the north bank of the Wei River has little hydraulic connection with underlain groundwater. The CFCs age of groundwater from the piedmont recharge area was young, and became older toward the Wei River valley. Vertically, the CFCs age of groundwater increased with well depth. The shallow groundwater is mainly composed of young water with ages < 60 years and old water with ages > 60 years. Young water is in a larger proportion. The NO3-N concentration positively correlates with the CFC-12 concentration in the groundwater, which indicates that young water is subjected to be contaminated. Keyword: Guanzhong Basin , shallow groundwater, isotope, CFC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The land subsidence of soft clay is including natural and man-made content, which leads to the research on the mechanism of land subsidence constituted by two different aspects, which are studied by geological engineers and geologist. The main major research is focused on the effects of engineering. The land subsidence engineering of soil mechanics is caused by the consolidation and compression of soft clay, the content of which is including the micro-structural characteristics, the stress - strain constitutive relation, porous law, and consolidation theory. In this paper, it is discussed the nonlinear consolidation and compression theory of soft clay. The main studies and conclusions of this thesis are as follows. (1)The micro-structure and its stability are closely related to the engineering characters of soft clay. The stiffness and force connection status of micro-structure plays a controlling influence to its stability. (2)Under saturated state, clay particles remain in a non-full contact or non-contact status, so it is needed to modify the Terzaghi effective stress principle. With the discharge of pore water, the effective stress is increasing, and part of weakly bound-water begins flow, while the porosity and permeability are became lower. (3)It exist non-linear flow in soft clay, which is caused by the shear flow situation of weakly bounded-water. In this case, permeability coefficient is a nonlinear function of hydraulic gradient. (4)In the initial consolidation stage of soft clay in the initial stage, the porous flow is mainly caused by the excretion of free water. With the decrease of free water content, combined bonded-water start to supply free water. At the later stage of consolidation, the flow of fluid is mainly consisted by weakly bounded-water. The exchange between bonded-water and free water is played a role, which slows down the consolidation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The practice of coalbed methane development from home and abroad demonstrated Hydrogeological factor is one of the important geological factors influencing the coalbed methane productivity. The grasp of groundwater behavior feature is the prerequisite to success development of coalbed methane. Through researching the mechanism by which hydrodynamics factors control the storage and transportation of coalfen methane, the ground- water behavior reflecting the feature of coalbed, and mathematics model describing the production process of coalbed methane, this paper devoted to finding the law of groundwater behavior during the course of storage and production and gave hydrogeology theoretical support to the development of coalbed methane. This paper firstly studied hydrodynamic factors influencing the productivity of coalbed methane, based on the analysis of the relative feature of coalbed methane and that of it's reservoir. The productivity of coalbed methane is controlled by reservoir pressure、permeability and recharge conditions. Reservoir pressure, the key factor controlling gas content of coalbed, is ruled by the history of hydrodynamic and current hydrogeological conditions. It indirectly controls the poductivity through influencing the permeability. The permeability of coalbed is the direct factor controlling the productivity. The recharge conditions controls the productivity through influencing initial reservoir pressure and the descend of reservoir pressure during development of coalbed methane. The field of hydrodynamic and the field of hydrochemistry can be used to identified the flow model of groundwater and the coalbed feature can be deducted by the hydraulic gradient、pressure compartment and hydrochemistry. The production of coalbed methane is a complex physical process which including the mutual action between water、solid and gas. This paper studied the mechanism of water-solid action and that of water-gas action, conducted the controlling equation describing the complex process and gave the corresponding mathematics model with its solution by finite-Element method. Finally, this paper analysised the prospective of coalbed methane development of the south section of Hongguo area in Yizikong basin and put emphasis on the analysis of productivity of liangshan and jingzhuping blocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Karst collapse is one of the most important engineering geology hazards in Karst district, which seriously endangers the living of humankind and the environment around us, as well as the natural resources. Generally speaking, there exist three processes of overburden karst collapse:the formation of soil cavity, the expansion of soil cavity and the fall of the cavity roof. During these processes, groundwater is always the most active factor and plays a key role. Pumping will bring into the great change of groundwater in flow state, flowrate, frequency of fluctuation as well as hydraulic gradient and will speed the fall. Statistics shows that most of the man-made karst collapse are induced by pumping, so studying the mechanism of Karst collapse induced by pumping will provide theoretical base for the prediction and precaution of collapse. By theoretically studying the initial condition for the forming and expanding of a soil cavity, Spalling step by step the essential mechanism of Karst collapse induced by pumping is put forward. The catastrophe model for the collapse induced by pumping is set up to predict the fall probability of a cavity roof, and the criterion for the collapse is determined. Simultaneously, Karst collapse induced by pumping is predicted with manmade neural network theory. Finally, the appropriate precaution measurements for the collapse induced by pumping are provided. The creative opinions of the paper is following: The initial condition of forming a soil cavity is put forwarded as formula (4-1-5), (4-1-24),(4-1-25) and (4-1-27); which provide theoretical base for foreclosing the formation of a soil cavity and defending collapse. Spaliing step by step as the essential mechanism of Karst collapse induced by pumping is put forward. The spaliing force is defined as formula (4-2-15). The condition for the expanding of a soil cavity is that spaliing force is greater than tensile strength of soil. The stability of a soil cavity is first studied with catastrophe theory. It is concluded that the process of development up to ground collapse of a small cavity is continuous, however, the process of a big cavity is catastrophic. It is feasibility that the Karst collapse be predicted with manmade neural network theory as a new way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorus is an important biological and ecological element that to a certain degree constrains ecological environment and nutrient (including carbon) cycling. Marine sedimentary phosphorites are the principal phosphorus supply of the mankind. In the eastern to southern margins of the Yangtze Craton, South China, there are two phosphogenetic events at the Doushantuo stage of the Late Sinian and the Meishucun stage of the Early Cambrian respectively, corresponding two explosion events of life across the Precambrian\Cambrian boundary. Phosphorus ores from the Sinian and Cambrian phosphate in South China can be classified roughly into two categories, namely, grained and non-grained phosphorites. Grained phosphorites, hosted in dolostone type of phosphogenetic sequences and with larger industrial values, occur mainly in margins of the Upper Yangtze Platform, formed in shallow-water environments with high hydraulic energy and influenced by frequent sea-level change. Non-grained phosphorites, hosted principally in black-shale type of phosphogenetic sequences and with smaller industrial values, are distributed mainly in the Jiangnan region where deeper-water sub-basins with low hydraulic energy were prevailing at the time of phosphogenesis. Secular change ofδ~(13)C, δ~(18) O, ~(86)Sr/~(87)Sr values of carbonates from Sinian and Cambrian sequences were determined. A negative abnormal ofδ~(13)C, δ~(18)O values and positive abnormal of 86Sr/87Sr values from the fossiliferous section of the Lowest Cambrian Meishucun Formation implies life depopulation and following explosion of life across the PrecambriamCambrian boundary. Based on a lot of observations, this paper put forward a six-stage genetic model describing the whole formational process of industrial phosphorites: 1) Phosphorus was transported from continental weathering products and stored in the ocean; 2) dissolved phosphates in the seawater were enriched in specific deep seawater layer; 3) coastal upwelling currents took this phosphorus-rich seawater to a specific coastal area where phosphorus was captured by oceanic microbes; 4) clastic sediments in this upwelling area were enriched in phosphorus because of abundant phosphorus-rich organic matters and because of phosphorus absorption on grain surfaces; 5) during early diagenesis, the phosphorus enriched in the clastic sediments was released into interstitial water by decomposition and desorption, and then transported to the oxidation-reduction interface where authigenic phosphates were deposited and enriched; 6) such authigenic phosphate-rich layers were scoured, broken up, and winnowed in shallow-water environments resulting in phosphate enrichment. The Sinian-Cambrian phosphorites in South China are in many aspects comparable with coastal-upwelling phosphorites of younger geological ages, especially with phosphorites from modern coastal upwelling areas. That implies the similarities between the Sinian-Cambrian ocean and the modern ocean. Although Sinian-Cambrian oceanic life was much simpler than modern one, but similar oceanic planktons prevail, because oceanic planktons (particularly phytoplanktons) are crucial for phosphate enrichment related to coastal upwelling. It implies also a similar seawater-layering pattern between the Sinian-Cambrian ocean and the modern ocean. The two global phosphate-forming events and corresponding life-explosion events at the Sinian and Cambrian time probably resulted from dissolved-phosphate accumulation in seawater over a critical concentration during the Earth's evolution. Such an oceanic system with seawater phosphorus supersaturation is evidently unstable, and trends to return to normal state through phosphate deposition. Accordingly, this paper put forward a new conception of "normal state <=> phosphorus-supersaturation state" cycling of oceanic system. Such "normal state <=> phosphorus-supersaturation state" cycling was not only important for the three well-known global phosphate-forming events, also related to the critical moments of life evolution on the Earth. It might be of special significance. The favorable paleo-oceanic orientation in regard to coastal-upwelling phosphorite formation suggests a different orientation of the Yangtze Craton between the Sinian time and the present time (with a 135° clockwise difference), and a 25° anti-clockwise rotation of the Yangtze Craton from late Sinian to early Cambrian. During the Sinian-Cambrian time, the Yangtze Craton might be separated from the Cathaysia Block, but might be still associated with the North China Craton.