99 resultados para Holocentric chromosomes
Chromosomal rearrangement in Pectinidae revealed by rRNA loci and implications for bivalve evolution
Resumo:
Karyotype and chromosomal localization of major (18-5.8-28S) and minor (5S) ribosomal RNA genes were studied in two species of Pectinidae, zhikong (Chlamys farreri) and bay (Argopecten irradians irradians) scallops. using fluorescence in situ hybridization (FISH). C. farreri had a haploid number of 19 with a karyotype of 3m + 4sm + 7sm-st + 4st + 1st-t, and A. i. irradians had a haploid number of 16 with a karyotype of 5st + 11t. In C. farreri, the major and minor rRNA genes had one locus each and were mapped to the same chromosome-Chromosome 5. In A. i. irradians, the major rRNA genes had two loci, located on Chromosomes 4 and 8, and the 5S rRNA gene was found at a third chromosome-Chromosome 10. Results of this and other studies indicate that karyotype of A. i. irradians (n = 16, 21 arms) is secondary and derived from an ancestral karyotype similar to that of C. farreri (n = 19, 38 arms) through considerable chromosomal loss and rearrangements. The ability to tolerate significant chromosomal loss suggests that the modal karyotype of Pectinidae and possibly other bivalves with a haploid number of 19 is likely tetraploid; i.e., at least one genome duplication has occurred during the evolution of Bivalvia.
Resumo:
Karyotype and chromosomal location of the major ribosomal RNA genes were studied in the hard clam (Mercenaria mercenaria Linnaeus) using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos. Internal transcribed spacers (ITS) between major RNA genes were amplified and used as FISH probes. The probes were labeled with digoxigenin-11-dUTP by polymerase chain reaction and detected with fluorescein-labeled anti-digoxigenin antibodies. FISH with the ITS probes produced two to four signals per nucleus or metaphase. M. mercenaria had a haploid number of 19 chromosomes with a karyotype of seven metacentric, four metacentric or submetacentric, seven submetacentric, and one submetacentric or subtelocentric chromosomes (7M + 4M/SM + 7SM + 1SM/ST). Two ITS loci were observed: one located near the centromere on the long arm of Chromosome 10 and the other at the telomere of the short arm of Chromosome 12. FISH signals on Chromosome 10 are strong and consistent, while signals on Chromosome 12 are variable. This study provides the first karyotype and chromosomal assignment of the major RNA genes in M. mercenaria. Similar studies in a wide range of species are needed to understand the role of chromosomal changes in bivalve evolution.
Resumo:
Chromosomal location of the major ribosomal RNA genes (rRNA) were studied in the dwarf surfclam (Mulinia lateralis, Say) using fluorescence in situ hybridization (FISH). FISH probes for the rRNA genes were made by polymerase chain reaction (PCR), labeled with digoxigenin-11-dUTP and detected with fluorescein-labeled antidigoxigenin antibodies. Mulinia lateralis had a diploid number of 38 chromosomes and all chromosomes were telocentric. FISH with the rRNA probe produced positive and consistent signals on two pairs of chromosomes: Chromosome 15 with a relative length of 4.6% and Chromosome 19, the shortest chromosome. Both loci were telomeric. The rRNA location provides the first physical landmark of the M. lateralis genome.
Resumo:
Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (RAPD). All lines showed a chromosome number of 2n = 42, five of them carried both a pair of wheat-rye (Triticum aestivum-Secale cereal) 1BL/1RS translocation chromosomes and a pair of Agropyron intermedium (Ai) chromosomes, three carried a pair of Ai chromosomes only, three others carried a pair of 1BL/1RS chromosomes only, and one carried neither 1BL/1BS nor Ai chromosome. Further identification revealed that the identical Ai chromosome in these germplasm lines substituted the chromosome 2D of common wheat (Triticum aestivum L.), designated as 2Ai. The genetic implication and further utilization of 2Ai in wheat improvement were also discussed.
Resumo:
Milula, a monotypic genus endemic to the Qinghai-Tibetan Plateau, was found to be nested deeply within Allium by the molecular phylogeny despite the aberrant morphology. It remains unknown what had contributed to the rapid evolution of morphology and origin of this exceptional species. In contrast to a previous report of its karyotypes with 2n = 16 = 8M+8SM (2SAT), similar to most species of Allium, a rather different karyotype, 2n = 20 = 4M +10SM+6T (2SAT), was found in examined 31 individuals from 6 populations of M. spicata distributed in the central Tibet. Karyotypes of 7 Allium species occurring in the Qinghai-Tibetan Plateau were further reported. The basic number x = 8 was confirmed for all of them and their karyotypes consist mainly of metacentric and submetacentric chromosomes with rare subterminal and terminal chromosomes. The karyotype of M. spicata is distinctly different from that of most Allium species occurring in the plateau through a complete comparison of all available species in this region and adjacent areas. However, the same chromosome number and similar karyotypic structure were found in A. fasciculatum of Sect. Bromatorrhiza, indicating a possible close relationship between them. But this similarity is contradictory to the preliminary molecular phylogenetic analysis that Milula was closely related to A. cyathophorum of Sect. Bromatorrhiza with x=8, but the other species with x=10 and 11 in this section were clearly placed in the other clade. We therefore suggested that the paralleling evolution from x=8 to x=9, 10 and 11 with increasing asymmetry of karyotype possibly due to the chromosomal Robertsonian translocation might occur separately in the two recognized phylogenetic lineages of Allium. In addition to aneuploidy and following change of the chromosomal structures, the habitat isolation due to the recent uplift of the Qinghai-Tibetan Plateau and the Quaternary climatic oscillation, plays a greater role in origin of Milula and other endemic species (genera) with aberrant morphology from their progenitors.
Resumo:
Background and Aims The systematic position of the genus Metagentiana and its phylogenetic relationships with Crawfurdia, Gentiana and Tripterospermum have not been explicitly addressed. These four genera belong to one of two subtribes (Gentianinae) of Gentianeae. The aim of this paper is to examine the systematic position of Crawfurdia, Metagentiana and Tripterospermum and to clarify their phylogenetic affinities more clearly using ITS and trnL intron sequences.Methods Nucleotide sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the plastid DNA trnL (UAA) intron were analysed phylogenetically. Ten of fourteen Metagentiana species were sampled, together with 40 species of other genera in the subtribe Gentianinae.Key Results The data support several previously published conclusions relating to the separation of Metagentiana from Gentiana and its closer relationships to Crawfurdia and Tripterospermum based on studies of gross morphology, floral anatomy, chromosomes, palynology, embryology and previous molecular data. The molecular clock hypothesis for the tested sequences in subtribe Gentianinae was not supported by the data (P < 0.05), so the clock-independent non-parametric rate smoothing method was used to estimate divergence time. This indicates that the separation of Crawfurdia, Metagentiana and Tripterospermum from Gentiana occurred about 11.4-21.4 Mya (million years ago), and the current species of these three genera diverged at times ranging from 0.4 to 6.2 Mya.Conclusions The molecular analyses revealed that Crawfurdia, Metagentiana and Tripterospermum do not merit status as three separate genera, because sampled species of Crawfurdia and Tripterospermum are embedded within Metagentiana. The speciation and rapid radiation of these three genera is likely to have occurred in western China as a result of upthrust of the Himalayas during the late Miocene and the Pleistocene.
Resumo:
Ligularia, a highly diversified genus in the eastern Qinghai-Tibet Plateau and adjacent areas, was chosen as a suitable subject in which to study speciation patterns in this 'hot spot' area at the chromosomal level. Chromosome numbers and karyotypes were studied in 23 populations of 14 species, most of which are endemic to this area. The basic number x = 29 was confirmed for all species. Ligularia virgaurea was found to have diploid and triploid cytotypes, 2n = 58 and 87. Other species are only diploid, with 2n = 58. The karyotypes of all populations within any species, and all species spanning most sections and covering most of the morphological range in Ligularia, are very similar to each other, belonging to type 2A according to Stebbin's classification. This karyotype was also found in its close allies, e.g. Cremanthodium, Ligulariopsis, Parasenecio, and Sinacalia. Aneuploid reduction of chromosome number from 2n = 60 to 58 and karyotypic variation was found in Ligularia and its allies. Such a chromosomal pattern with few polyploids infers that variation of karyotype structure at the diploid level seems to be the predominant feature of chromosomal evolution in this group and sympatric speciation via hybridization and polyploidization has played a minor role in its species diversity. (C) 2004 The Linnean Society of London
Resumo:
The evidence from cross morphology, floral anatomy, chromosomes, palynology, and embryology all indicates that sect. Stenogyne is discordant within the genus Gentiana and is as distinct from the other sections of Gentiana as are other genera, such as Tripterospermum and Crawfurdia. In light of these characters, sect. Stenogyne is removed from Gentiana and given generic rank as the new genus Metagentiana. It is more related to Tripterospermum and Crawfurdia than to Gentiana, though it is more primitive than the first two genera. Together with Tripterospermum and Crawfurdia the new genus forms a monophyletic group, which is the sister group to the genus Gentiana. Fourteen new combinations required at specific rank are proposed.
Karyomorphology of Biebersteinia Stephan (Geraniaceae) and its systematic and taxonomic significance
Resumo:
The systematic and taxonomic position of Biebersteinia Stephan has long been in dispute. The present paper describes for the first time the karyomorphology of two species in Biebersteinia Stephan. Both species commonly showed the interphase nuclei of the simple chromocenter type and the mitotic prophase chromosomes of the interstitial type. The karyotype formulae of both B. heterostemon and B. odora were 2n=10=2m(2sec)+8sm(2sec), belonging to the 3A type of Stebbins' classification. The karyotype of this genus is recorded for the first time. The basic chromosome numbers of four of the five known species of Biebersteinia have been recorded as x=5. The combination of resting nuclei of the simple chromocenter type, mitotic prophase chromosomes of the interstitial type, two pairs of chromosomes with four obvious secondary constrictions at the mitotic prophase and metaphase stages, and the peculiar 3A karyotype in Biebersteinia can be regarded as the karymorphological marker of this genus. The karyomorphological data presented here do not support the traditional grouping of this genus in Geraniaceae. The unique karyomorphology of Biebersteinia justifies its familiar or ordinal status, which is congruent with embryological, anatomical, chemical and molecular data. The systematic position of Biebersteinia needs further study.