145 resultados para High-temperature polymorph
Resumo:
National Science Foundation of China (No. 10032040 and No. 49874013) and Joint Earthquake Science Foundation of China (No. 101119).
Resumo:
Phase structure and stability of three typical mixed ionic and electronic conducting perovskite-type membranes, SrCo0.8Fe0.2O3-delta (SCF), Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) and BaCo0.4Fe0.4Zr0.2O3-delta (BCFZ) were studied by in situ high temperature X-ray diffraction at temperatures from 303 to 1273 K and under different atmospheres (air, 2% O-2 in Ar and pure Ar) at 1173 K. By analyzing their lattice parameters the thermal expansion coefficients (TECs) of BSCF, SCF and BCZF are obtained to be 11.5 x 10(-6) K-1, 17.9 x 10(-6) K-1 and 10.3 x 10(-6) K-1, respectively. A relationship between phase stability and TEC was proposed: the higher is the TEC, the lower is the operation stability of the perovskite materials. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.
Resumo:
We have observed that Calanus sinicus retreated from neritic areas in the Yellow Sea and concentrated in the Yellow Sea Cold Bottom Water (YSCBW) area in summer. To investigate the summer reproductive strategy of C. sinicus in this situation, effects of high temperature on reproduction and hatching, as well as geographical variation of in situ egg production rate, were studied by onboard incubation in August 2001. Diel vertical migration (DVM) of females was investigated within and outside the YSCBW, respectively. Onboard incubation at 27 degrees C (i.e. surface temperature) resulted in lower fecundities than that at 9.8 and 12 degrees C (i.e. bottom temperature inside and outside the YSCBW) together with decreased hatching rates and increased naupliar malformation. Egg production was more active at stations outside the YSCBW than inside, where chlorophyll-a concentration was also relatively low. Females inside the YSCBW underwent DVM although they rarely entered the surface layer, but DVM was not observed outside the YSCBW. We conclude that surface temperature in summer has deleterious effects on C. sinicus egg production and hatching, and that it cannot reproduce successfully over the whole area. Inside the YSCBW, egg production is depressed by low food availability, while females outside suffer from high temperatures because of strong vertical mixing.
Resumo:
At high temperature rise rate, the mechanical properties of 10 # steel were determined experimentally in a very wide range of temperature and strain rates. A new constitutive relationship was put forward, which can fit with the experimental results and describe various phenomena observed in our experiments. Meanwhile, some interesting characteristics about the temperature rise rate, strain and strain rate hardening and thermal softening are also shown in this paper. Finally, the reliability of the constitutive law and the correctness of the constitutive parameters were verified by comparing the calculation results with the experimental data.
Resumo:
Algal blooms, worsening marine ecosystems and causing great economic loss, have been paid much attention to for a long time. Such environmental factors as light penetration, water temperature, and nutrient concentration are crucial in blooms processes. Among them, only nutrients can be controlled. Therefore, the threshold of nutrients for algal blooms is of great concern. To begin with, a dynamic eutrophication model has been constructed to simulate the algal growth and phosphorus cycling. The model encapsulates the essential biological processes of algal growth and decay, and phosphorus regeneration due to algal decay. The nutrient limitation is based upon commonly used Monod's kinetics. The effects of temperature and phosphorus limitation are particularly addressed. Then, we have endeavored to elucidate the threshold of phosphorus at different temperature for algal blooms. Based on the numerical simulation, the isoquant contours of change rate of alga as shown in the figure are obtained, which obviously demonstrate the threshold of nutrient at an arbitrary reasonable temperature. The larger the change rate is, the more rapidly the alga grows. If the phosphorus concentration at a given temperature remains larger than the threshold the algal biomass may increase monotonically, leading to the algal blooming. With the rising of temperature, the threshold is apparently reduced, which may explain why likely red tide disasters occur in a fine summer day. So, high temperature and sufficient phosphorus supply are the major factors which result in algal growth and blowout of red tide.
Resumo:
According to the experimental results and the characteristics of the pressure-sensitive fractured formation, a transient flow model is developed for the deep naturally-fractured reservoirs with different outer boundary conditions. The finite element equations for the model are derived. After generating the unstructured grids in the solution regions, the finite element method is used to calculate the pressure type curves for the pressure-sensitive fractured reservoir with different outer boundaries, such as the infinite boundary, circle boundary and combined linear boundaries, and the characteristics of the type curves are comparatively analyzed. The effects on the pressure curves caused by pressure sensitivity module and the effective radius combined parameter are determined, and the method for calculating the pressure-sensitive reservoir parameters is introduced. By analyzing the real field case in the high temperature and pressure reservoir, the perfect results show that the transient flow model for the pressure-sensitive fractured reservoir in this paper is correct.
Resumo:
TiO2 coatings were prepared on fused silica with conventional electron beam evaporation deposition. After TiO2 thin films were annealed at different temperatures for 4 h, several properties were investigated by X-ray diffraction (XRD), spectrometer.. photoelectron spectroscopy (XPS) and AFM. It was found that with the annealing temperature increasing, the transmittance of TiO2 coatings decreased, and the cutoff wavelength shifted to long wavelength in near ultraviolet band. Especially, when coatings were annealed at high temperature, the optical loss is very serious, which can be attributed to the scattering and the absorption of TiO2 coatings. XRD patterns revealed that only anatase phase was observed in TiO2 coatings regardless of the different annealing temperatures. XPS results indicated that the fine chemical shift of TiO2 2p(1/2) should be attributed to existence of oxygen vacancies around Ti+4 ion. The investigation on surface morphology by AFM showed that the RMS of titania thin films gradually increases from less than 0.40 nm to 5.03 nm and it should be ascribed to the growth of titanium dioxide grain size with the increase of annealing temperature. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
TiO2 thin films are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for 4h, the spectra and XRD patterns of the TiO2 thin film are obtained. Weak absorption of coatings is measured by the surface thermal lensing technique, and laser-induced damage threshold (LIDT) is determined. It is found that with the increasing annealing temperature, the transmittance of TiO2 films decreases. Especially when coatings are annealed at high temperature over 1173K, the optical loss is very serious. Weak absorption detection indicates that the absorption of coatings decreases firstly and then increases, and the absorption and defects play major roles in the LIDT of TiO2 thin films.
Resumo:
Dark respiration (nonphotorespiratory mitochondrial CO2 release) in the light (R-L) of the intertidal macroalga Ulva lactuca (Chorophyta) during emersion was investigated with respect to its response to variations in temperature and desiccation. R-L was estimated by CO2 gas-exchange analysis using the Kok effect method, whereas dark respiration in darkness (R-D) was determined from CO2 release at zero light. Rates of R, were significantly and consistently lower than those of R-D in emersed U. lactuca across all the temperature and desiccation levels measured. This demonstrated that dark respiration was partially depressed in the light, with the percentage inhibition ranging from 32 to 62%. Desiccation exerted a negative effect on R-L and R-D at a high temperature, 33 degrees C, whereas it had much less effect on respiration at low and moderate temperatures, 23 and 28 degrees C. In general, R-L and R-D increased with increasing temperature in U. lactuca during all stages of emersion but responded less positively to temperature change with increasing desiccation. Additionally, the Q(10) value (i.e. the proportional increase of respiration for each 10 degrees C rise in temperature) for R-L calculated over the temperature range of 23 to 33 degrees C was significantly higher than that for R-D in U. lactuca during the initial stages of emersion. Respiratory carbon loss as a percentage of gross photosynthetic carbon gain increased with increasing temperature and/or desiccation but was significantly reduced when estimated using R-L rather than R-D. It is suggested that measurements of R-L and how it changes in a variable environment are as important as estimates of R-D and photosynthesis in determining simultaneous balance between photosynthetic carbon uptake and respiratory carbon loss and in modeling the net daily carbon gain for an intertidal macroalga.