93 resultados para High velocity oxy-fuel (HVOF) spraying


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, high-surface supported PtRu/C were prepared with Ru(NO)(NO3)(3) and [Pt(H2NCH2CH2NH2)(2)]Cl-2 as the precursors and hydrogen as a reducing agent. XRD and TEM analyses showed that the PtRu/C catalysts with different loadings possessed small and homogeneous metal particles. Even at high metal loading (40 wt.% Pt, 20 wt.% Ru) the mean metal particle size is less than 4 nm. Meanwhile, the calculated Pt crystalline lattice parameter and Pt (220) peak position indicated that the geometric structure of Pt was modified by Ru atoms. Among the prepared catalysts, the lattice parameter of 40-20 wt.% PtRu/C contract most. Cyclic voltammetry (CV), chronoamperometry (CA), CO stripping and single direct methanol fuel cell tests jointly suggested that the 40-20 wt.% PtRu/C catalyst has the highest electrochemical activity for methanol oxidation. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present review, we summarize the recent progress in electrocatalysts for direct alcohol fuel cells, focussing on the research of electrocatalysts for both alcohol oxidation and oxygen reduction, which are crucial in the development of fuel cells. A modified EG (ethylene polyol) method to prepare well-dispersed nano-sized Pt-based electrocatalysts with high loadings is reported. By this method, a more active carbon supported PtRu catalyst for methanol oxidation reaction and a PtSn catalyst for ethanol oxidation reaction have been synthesized successfully. Furthermore, a methanol tolerant Pd-based catalyst for cathode oxygen reduction reaction has been developed. HRTEM and HR-EDS have been employed to characterize the microstructure and micro-components of the above electrocatalysts. Results show that the bimetallic electrocatalysts prepared by the modified EG method display uniform size and homogeneous components at nanometer scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new mesoporous sphere-like SBA-15 silica was synthesized and evaluated in terms of its suitability as stationary phases for CEC. The unique and attractive properties of the silica particle are its submicrometer particle size of 400 nm and highly ordered cylindrical mesopores with uniform pore size of 12 nm running along the same direction. The bare silica particles with submicrometer size have been successfully employed for the normal-phase electrochromatographic separation of polar compounds with high efficiency (e.g., 210 000 for thiourea), which is matched well with its submicrometer particle size. The Van Deemeter plot showed the hindrance to mass transfer because of the existence of pore structure. The lowest plate height of 2.0 mu m was obtained at the linear velocity of 1.1 mm/s. On the other hand, because of the relatively high linear velocity (e.g., 4.0 mm/s) can be generated, high-speed separation of neutral compounds, anilines, and basic pharmaceuticals in CEC with C-18-modified SBA-15 silica as stationary phases was achieved within 36, 60, and 34 s, respectively.