102 resultados para Grassland Ecosystems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported by MSS images in the mid and late 1970s, TM images in the early 1990s and TM/ETM images in 2004, grassland degradation in the "Three-River Headwaters" region (TRH region) was interpreted through analysis on IRS images in two time series, then the spatial and temporal characteristics of grassland degradation in the TRH region were analyzed since the 1970s. The results showed that grassland degradation in the TRH region was a continuous change process which had large affected area and long time scale, and rapidly strengthen phenomenon did not exist in the 1990s as a whole. Grassland degradation pattern in the TRH region took shape initially in the mid and late 1970s. Since the 1970s, this degradation process has taken place continuously, obviously characterizing different rules in different regions. In humid and semi-humid meadow region, grassland firstly fragmentized, then vegetation coverage decreased continuously, and finally "black-soil-patch" degraded grassland was formed. But in semi-arid and and steppe region, the vegetation coverage decreased continuously, and finally desertification was formed. Because grassland degradation had obviously regional differences in the TRH region, it could be regionalized into 7 zones, and each zone had different characteristics in type, grade, scale and time process of grassland degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

在青藏高原中国科学院海北高寒草甸生态系统定位研究站对金露梅高寒灌丛草场植被开展了长期不同放 牧强度试验,分别在短期(4 年) 、中期(11 年) 和长期(18 年) 放牧阶段研究不同放牧干扰强度对草地植物物种多样 性、群落结构、地上生物量和草场质量的影响。研究表明,在不同放牧阶段,随着放牧强度增加植物群落的高度和 盖度都降低。在中期放牧干扰阶段,物种多样性指数和均匀度指数随着放牧强度增加呈现典型的单峰曲线模式; 在长期放牧干扰阶段,随着放牧强度增加,占优势地位的灌木和禾草被典型杂类草替代,其中的重度放牧干扰简化 了高寒灌丛植被群落结构,减少了地上现存生物量,特别是可食优良牧草生物量。植被对放牧的响应除了与放牧 强度和放牧时间阶段密切相关外,还与该地区水热条件的变化有一定的相关性。针对长期放牧干扰的反应特性可 将金露梅灌丛草场中植物划分为增加型、敏感型、忍耐型和无反应型4 种类型。除了丰富度指数、多样性指数和均 匀度指数外,其它一些特征参数并不支持著名的中度干扰假说。本研究发现,长期重度放牧促进了青藏高原高寒 草地退化,适度放牧有利于高寒灌丛草场的生物多样性保护和牧草利用;“取半留半”的放牧原则在青藏高原草场 放牧管理实践中值得推荐,它将有利于防止草场退化,提高牧草利用率和维持较高的生物多样性。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geo-ecological transect studies in the pastures of the upper catchment of the HuangHe (99 degrees 30'-100 degrees 00'E/35 degrees 30'-35 degrees 40'N'; 3,000-4,000 in a.s.l., Qinghai province, China) revealed evidence that pastures replace forests. Plot-based vegetation records and fenced grazing exclosure experiments enabled the identification of grazing indicator plants for the first time. The mapping of vegetation patterns of pastures with isolated juniper and Spruce forests raise questions as to the origin of the grasslands, which arc widely classified as "natural" at present. Soil investigations and charcoal fragments of Juniperus (8,153 +/- 63 uncal BP) and Picea (6,665 +/- 59 uncal BP) provide evidence of the wider presence of forests. As temperatures and rainfall records undoubtedly represent a forest climate, it is assumed that the present pastures have replaced forests. Circumstantial evidence arising from investigations into the environmental history of the Holocene effectively substantiates this theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Livestock grazing has long been the most widespread land use on the Qinghai-Tibet Plateau, one of the world's highest ecosystems. However, there has been increasing concern during recent decades because of the rapid increase in livestock numbers. To assess the possible influences of grazing on the vast grassland, a long-term grazing experiment in a shrub meadow on the northern Qinghai-Tibet Plateau was carried out. The experiment included five treatments with different stocking rates and one non-grazing (N) treatment. After 17 years of grazing, treatment differences were clear. The species composition differed markedly between grazing intensities, with a decrease in palatable grass species and an increase in unpalatable forbs at higher grazing intensities. The species richness and species diversity, however, were not significantly different between treatments. Vegetation height decreased significantly at higher grazing intensities. Total above,ground biomass declined considerably and the biomass of forbs increased significantly under the higher grazing intensities. The amount of litter was significantly lower under the higher grazing intensities. The results suggest that long-term grazing alters the species composition, vegetation height and biomass production of the alpine grassland ecosystem without significantly changing species richness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excrement patches of grazing animals play an important role in greenhouse gas (GHG) fluxes due to the high nitrogen (N) and available carbon (C) deposited in small areas, but little information is available for the effect of excrement in the Inner Mongolian grassland (43 26 degrees N, 116 degrees 40'E). To elucidate the effect of grazing sheep urine, fresh dung and compost on fluxes of methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O), a short-term field study (65 days) was carried out in the typical grassland of Inner Mongolia with the optimised closed chamber/GC technique. Compared with the control, cumulative net CH4 consumption decreased 36, 31, and 18% from urine, fresh dung, and compost plots, respectively; net CO2-C output increased by 6.5, 1.5, and 1.2% from urine, fresh dung, and compost treated soil, respectively; about three times as much N2O-N was emitted from urine and the fresh dung treatments during 65 days. Nitrous oxide emission was positively correlated with CO, emission (R = 0.691, P < 0.01) and water-filled pore space (R = 0.698, P < 0.01). The percentages of N2O-N loss of applied-N were 0.44 and 1.05% for urine and fresh dung, respectively. Our results suggest that in autumn in the degraded grassland of Inner Mongolia, the effect of sheep excrement may be ignored when evaluating the total GHG emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was the objective of this study to compare the suitability of different extractants for predicting the availability of sulfur (S) in natural grassland in a sulfur response trial on three different soil types in the Inner Mongolia steppe of China. For soil analysis, seven different extractants have been employed. The inorganic SO4-S concentration was determined by ion chromatography. Additionally, in the Ca(H-2-PO4)(2) extract the total soluble S was determined employing turbidimetry. Weak salt solutions (0.15% CaCl2, Ca(H2PO4)(2), and KH2PO4) extracted similar amounts Of SO4-S. Extraction with 0.025 M KCl provided the lowest SO4-S values. Deionized water dissolved significantly more SO4-S in the control plots than most weak salt extractants. The concentration of soluble organic S decreased in the control plots after 100 days of plant growth, indicating that the organic S pool contributed significantly to the S nutrition of the forage crops. Significant relationships among the SO4-S in the soil determined in different extracts and crop yield, sulfur content in the forage, and total sulfur uptake were only found for the Ca(H2PO4)(2) extract. In general, the correlation coefficients proved to be unsatisfactory for field experimentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forty-five male yaks (born April 2001) were studied to determine how seasonal changes on the Qinghai-Tibetan plateau affected BW and body composition. Thirty yaks were weighed monthly from birth to 26 mo of age to determine seasonal changes in BW. The remaining 15 yaks were allocated randomly to five groups (three yaks per group), designated for slaughter at 13, 15, 18, 22, and 25 mo to measure seasonal effects on body chemical composition. All yaks were grazed on the alpine-meadow grassland of the plateau without any supplementation. All BW and body composition data were calculated on an individual basis. Body weight and body composition data were both compared across seven growth periods spanning 2 yr and defined by season. From April (birth) to December 2001 of the first growing season, yak BW increased (P < 0.01); however, during the subsequent cold season (December 2001 to May 2002), BW decreased (P < 0.01). The second growing season ran from May 2002 (13 mo of age) to October 2002 (18 mo of age), and the second live weight-loss season ran from October 2002 until May 2003. The weight loss experienced by yaks during the first weight loss season was 25.64% of the total weight gain in the first growing season. The weight loss experienced by yaks during the second weight-loss season was 29.73% of the total weight gain in the second growing season. Energy retention in the second growing season was 291.07 MJ, 50.8% of which was consumed during the subsequent cold season. Energy accumulation in the summer (from May to July) and fall (from July to October) of the second growing season did not differ (5.01 and 6.30 MJ/kg of EBW gain, respectively; P = 0.63). The energy mobilized during the second winter (from October 2002 to February 2003) was 16.49 MJ/kg of EBW, and in the second spring (from February to May 2003), it was 9.06 MJ/kg of EBW. These data suggest that the decrease in grazing yak BW during the first cold season is much less than during the second cold season, and that the energy content per unit of BW mobilized is greater (P = 0.02) in winter than in spring. Results from this study demonstrate highly efficient compensatory growth in grazing yaks following the first weight loss period during the first cold season. This benefit could be exploited by herders to improve yak production. Yaks may have developed a type of self-protection mechanism to overcome the long cold seasons in the Qinghai-Tibetan plateau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grassland degradation is widespread and severe on the Tibet Plateau. To explore management approaches for sustainable development of degraded and restored ecosystems, we studied the effect of land degradation on species composition, species diversity, and vegetation productivity, and examined the relative influence of various rehabilitation practices (two seeding treatments and a non-seeded natural recovery treatment) on community structure and vegetation productivity in early secondary succession. The results showed: (1) All sedge and grass species of the natural steppe meadow had disappeared from the severely degraded land. The above-ground and root biomass of severely degraded land were only 38 and 14.7%, respectively, of those of the control. So, the original ecosystem has been dramatically altered by land degradation on alpine steppe meadow. (2) Seeding measures may promote above-ground biomass, particularly grass biomass, and ground cover. Except for the grasses seeded, however, other grass and sedge species did not occur after seeding treatments in the sixth year of seeding. Establishment of grasses during natural recovery treatment progressed slowly compared with during seeding treatments. Many annual forbs invaded and established during the 6 years of natural recovery. In addition, there was greater diversity after natural recovery treatment than after seeding treatments. (3) The above-ground biomass after seeding treatment and natural recovery treatment were 114 and 55%, respectively, of that of the control. No significant differences in root biomass occurred among the natural recovery and seeded treatments. Root biomass after rehabilitation treatment was 23-31% that of the control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Plateau zokors, Myospalax fontanierii, are the only subterranean herbivores on the Tibetan plateau of China. Although the population biology of plateau zokors has been studied for many years, the interactions between zokors and plants, especially for the maintenance and structure of ecological communities, have been poorly recognized. In the past, plateau zokors have been traditionally viewed as pests, competitors with cattle, and agents of soil erosion, thus eradication programmes have been carried out by local governments and farmers. Zokors are also widely and heavily exploited for their use in traditional Chinese medicine.2. Like other fossorial animals, such as pocket gophers Geomys spp. and prairie dogs Cynomys spp. in similar ecosystems, zokors may act to increase local environmental heterogeneity at the landscape level, aid in the formation, aeration and mixing of soil, and enhance infiltration of water into the soil thus curtailing erosion. The changes that zokors cause in the physical environment, vegetation and soil clearly affect the herbivore food web. Equally, plateau zokors also provide a significant food source for many avian and mammalian predators on the plateau. Zokor control leading to depletion of prey and secondary poisoning may therefore present problems for populations of numerous other animals.3. We highlight the important role plateau zokors play in the Tibetan plateau ecosystem. Plateau zokors should be managed in concert with other comprehensive rangeland treatments to ensure the ecological equilibrium and preservation of native biodiversity, as well as the long-term sustainable use of pastureland by domestic livestock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon is an essential element for life, food and energy. It is also a key element in the greenhouse gases and therefore plays a vital role in climatic changes. The rapid increase in atmospheric concentration of CO_2 over the past 150 years, reaching current concentrations of about 370 ppmv, corresponds with combustion of fossii fuels since the beginning of the industrial age. Conversion of forested land to agricultural use has also redistributed carbon from plants and soils to the atmosphere. These human activities have significantly altered the global carbon cycle. Understanding the consequences of these activities in the coming decades is critical for formulating economic, energy, technology, trade, and security policies that will affect civilization for generations. Under the auspices of the International Geosphere-Biosphere Programme (IGBP), several large international scientific efforts are focused on elucidating the various aspects of the global carbon cycle of the past decade. It is only possible to balance the global carbon cycle for the 1990s if there is net carbon uptake by terrestrial ecosystems of around 2 Pg C/a. There are now some independent, direct evidences for the existence of such a sink. Policymarkers involved in the UN Framework Convention on Climate Change (UN-FCCC) are striving to reach consensuses on a 'safe path' for future emissions, the credible predictions on where and how long the terrestrial sink will either persist at its current level, or grow/decline in the future, are important to advice the policy process. The changes of terrestrial carbon storage depend not only on human activities, but also on biogeochemical and climatological processes and their interaction with the carbon cycles. In this thesis, the climate-induced changes and human-induced changes of carbon storage in China since the past 20,000 years are examined. Based on the data of the soil profiles investigated during China's Second National Soil Survey (1979-1989), the forest biomass measured during China's Fourth National Forest Resource Inventory (1989-1993), the grass biomass investigated during the First National Grassland Resource Survey (1980-1991), and the data collected from a collection of published literatures, the current terrestrial carbon storage in China is estimated to -144.1 Pg C, including -136.8 Pg C in soil and -7.3 Pg C in vegetation. The soil organic (SOC) and inorganic carbon (SIC) storage are -78.2 Pg C and -58.6 Pg C, respectively. In the vegetation reservoir, the forest carbon storage is -5.3 Pg C, and the other of-1.4 Pg C is in the grassland. Under the natural conditions, the SOC, SIC, forest and grassland carbon storage are -85.3 Pg C, -62.6 Pg C, -24.5 Pg C and -5.3 Pg C, respectively. Thus, -29.6 Pg C organic carbon has been lost due to land use with a decrease of -20.6%. At the same time, the SIC storage also has been decreased by -4.0 Pg C (-6.4%). These suggest that human activity has caused significant carbon loss in terrestrial carbon storage of China, especially in the forest ecosystem (-76% loss). Using the Paleocarbon Model (PCM) developed by Wu et al. in this paper, total terrestrial organic carbon storage in China in the Last Glacial Maximum (LGM) was -114.8 Pg C, including -23.1 Pg C in vegetation and -86.7 Pg C in soil. At the Middle Holocene (MH), the vegetation, soil and total carbon were -37.3 Pg C, -93.9 Pg C and -136.0 Pg C, respectively. This implies a gain of-21.2 Pg C in the terrestrial carbon storage from LGM to HM mainly due to the temperature increase. However, a loss of-14.4 Pg C of terrestrial organic carbon occurred in China under the current condition (before 1850) compared with the MH time, mainly due to the precipitation decrease associated with the weakening of the Asian summer monsoon. These results also suggest that the terrestrial ecosystem in China has a substantial potential in the restoration of carbon storage. This might be expected to provide an efficient way to mitigate the greenhouse warming through land management practices. Assuming that half of the carbon loss in the degraded terrestrial ecosystem in current forest and grass areas are restored during the next 50 years or so, the terrestrial ecosystem in China may sequestrate -12.0 Pg of organic carbon from the atmosphere, which represents a considerable offset to the industry's CO2 emission. If the ' Anthropocene' Era will be another climate optimum like MH due to the greenhouse effect, the sequestration would be increased again by -4.3 - 9.0 Pg C in China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of proxy records of paleoenvironment using stable isotopes could show the history of past environmental changes. These archives include peat and lake sediments, loess-paleosot sequence, fossil mammals and stalagmite, and so on. The stable isotopic composition of carbonate and organic matter and frequency magnetic susceptibility from Tianshuigou and Yuanlei loess-palesol sequence can be used to give estimates of the paleoenvironmental history of Dali, and even of the whole Chinese Loess Plateau during the last 250ka. Features of the High Temperature and Large Precipitation Event in the Tibet Plateau and its adjacent area during 40~30kaBP had been studied by Professor Shi Y. In this dissertation, its impact on Chinese Loess Plateau has been discussed again. Carbon and oxygen isotopic ratios, magnetic susceptibility and frequency magnetic susceptibility in Tianshuigou and Yuanlei profiles show that the Event in this area is not so stronger as the Tibet Plateau. The carbon isotopic composition of organic matter in Tianshuigou, Yuanlei, dingcun and Jingcun loess-palesol sequences are indicative of major changes in the paleovagetation between terrace and plain of the Chinese Loess Plateau. Water is one of the most important factors adjusting the relative biomass of C4 plant in terrestrial ecosystems. Stable carbon isotope ratio of vertebrate tooth enamel is used increasingly to reconstruct environmental and ecological information modern and ancient ecosystems. The SI3C value of tooth enamel bioapatites can distinguish between browsers and grazers. Data from typical grassland of Inter Mongolia, the Alpine meadow of Qinghai-Tibet Plateau and the Yaluzangbu Great Canyon indicate that diets of mammals could record the relative biomass of C4 plant only in the C4 dominated ecosystem. In a C3 dominated ecosystem, diet of mammals would include more C3 plants than vegetation. According to Professor Cerling, proxy records from North and South America, Africa and Pakistan show that at the end of the Miocene (between 8Ma to 6 Ma) there was a global expansion of CA biomass, probably when atmospheric CO2 levels declined. Thus, "C4 world" and "CO2 starvation" are put forward. In this dissertation, carbon isotopes of fossil tooth such as Equus sanmeniensis and Hipparion chiai from Linxia, China reveal that there is a C3 dominated ecosystem in the late Miocene. Diets of ancient mammals in Linxia are not evidence of global expansion of C4 biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relationship between biology and environment is always the theme of ecology. Transect is becoming one of the important methods in studies on relationship between global change and terrestrial ecosystems, especially for analysis of its driving factors. Inner Mongolia Grassland is the most important in China Grassland Transect brought forward by Yu GR. In this study, changes in grassland community biomass along gradients of weather conditions in Inner Mongolia was researched by the method of transect. Methods of regression about biomass were also compared. The transect was set from Eerguna county to Alashan county (38° 07' 35" ~50° 12' 20" N, 101° 55' 25" -120° 20' 46" E) in Inner Mongolia, China. The sample sites were mainly chosen along the gradient of grassland type, meadow steppe-* typical steppe-*desert steppe-*steppification desert-^desert. The study was carried out when grassland community biomass got the peak in August or September, 2003 and 2004. And data of 49 sample sites was gotten, which included biomass, mean annual temperature, annual precipitation, accumulated temperature above zero, annual hours of sunshine and other statistical and descriptive data. The aboveground biomass was harvested, and the belowground biomass was obtained by coring (30 cm deep). Then all the biomass samples were dried within (80 + 5) °C in oven and weighted. The conclusion is as follows: 1) From the northeast to the southwest in Inner Mongolia, along the gradient of grassland type, meadow steppe-*typical steppe-*desert steppe-*steppification desert-* desert, the cover degree of vegetation community reduces. 2) By unitary regression analysis, biomass is negatively correlated with mean annual temperature, s^CTC accumulated temperature, ^10°C accumulated temperature and annual hours of sunshine, among which mean annual temperature is crucial, and positively with mean annual precipitation and mean annual relative humidity, and the correlation coefficient between biomass and mean annual relative humidity is higher. Altitude doesn't act on it evidently. Result of multiple regression analysis indicates that as the primary restrictive factor, precipitation affects biomass through complicated way on large scale, and its impaction is certainly important. Along the gradient of grassland type, total biomass reduces. The proportion of aboveground biomass to total biomass reduces and then increases after desert steppe. The trend of below ground biomass's proportion to total biomass is adverse to that of aboveground biomass. 3) Precipitation is not always the only driving factor along the transect for below-/aboveground biomass ratio of different vegetation type composed by different species, and distribution of temperature and precipitation is more important, which is much different among climatic regions, so that the trend of below-/aboveground biomass ratio along the grassland transect may change much through the circumscription of semiarid region and arid region. 4) Among reproductive allocation of aboveground biomass, only the proportion of stem in total biomass notably correlates to the given parameters. Stem/leaf biomass ratio decreases when longitude and latitude increase, caloric variables decrease, and variables about water increase from desert to meadow steppe. The change trends are good modeled by logarithm or binomial equations. 5) 0'-10 cm belowground biomass highly correlates to environmental parameters, whose proportion to total biomass changes most distinctly and increases along the gradient from the west to the east. The deeper belowground biomass responses to the environmental change on the adverse trend but not so sensitively as the surface layer. Because the change value of 0~10 cm belowground biomass is always more than that of below 10 cm along the gradient, the deference between them is balanced by aboveground biomass's change by the resource allocation equilibrium hypothesis.