109 resultados para Geography Climate
Resumo:
This review paper provides a brief review on the development of ideas in the fields of the sea level change of the ECS (East China Sea), the history of the Yangtze River entering the sea and paleochannels in the shelf of the ECS since the Last Glacial Maximum (LGM). The paper summarizes two opposite theories about the Yangtze River entering the sea during the LGM. One theory is that the Yangtze River input a lacustrine in the north of Jiangsu province which was defunct in middle Holocene, and the river was once dry. The other was that the Yangtze River still existed and entered into the Okinawa Trough during the LGM, but scholars share different opinions on which course the river ran across and which place the river input the trough. This paper concludes future work is to study the evolution of the Yangtze River and the paleoclimate and the corresponding events as a whole from the view of regional and even global change, and more attention should be paid to the study on mud sediment, the Yangtze River's response to the changes in climate and sea-level, and the channel metamorphosis.
Resumo:
Eight sporopollen zones have been divided based on the results of high-resolution sporopollen analysis of Core B10 in the southern Yellow Sea. Based on the results along with C-14 datings and the subbottom profiling data, climatic and environmental changes since the last stage of late Pleistocene are discussed. The main conclusions are drawn as follows: (1) the vegetation evolved in the process of coniferous forest-grassland containing broad-leaved treesconiferous and broad-leaved mixed forest --> coniferous and broad-leaved mixed forest-grassland prevailed by coniferous trees --> coniferous and broad-leaved mixed forest-grassland containing evergreen broad-leaved trees- coniferous and broad-leaved mixed forest-grassland prevailed by broad-leaved trees-deciduous broad-leaved forest-meadow containing evergreen broad-leaved trees- coniferous and broadleaved mixed forest-grassland prevailed by broad-leaved trees- coniferous and broad-leaved mixed forest containing evergreen broad-leaved trees; (2) eight stages of climate changes are identified as the cold and dry stage, the temperate and wet stage, the cold and dry stage, the warm and dry stage, the temperate and wet stage, the hot and dry stage, the temperate and dry stage, then the warm and dry stage in turn; (3) the sedimentary environment developed from land, to littoral zone, to land again, then to shore-neritic zone; and (4) the Yellow Sea Warm Current formed during early-Holocene rather than Atlantic stage.
Resumo:
Using a radiolarian-based transfer function, mean annual sea surface temperature (SST) and seasonal temperature range are reconstructed through the last 10,500yrs in the northern Okinawa Trough. Down-core SST estimates reveal that throughout the Holocene the changes of mean annual SST display a three-step trend: (i) an early Holocene continuous warming between 10,500 and 8500yr BP which ends up with a abrupt cooling at about 8200yr BP; (ii) a relatively stable middle Holocene with high SST that lasted until 3200yr BP; and (iii) a late-Holocene distinct SST decline between 3200 and 500yr BP. This pattern is in agreement with the ice core and terrestrial paleoclimatic records in the Chinese continent and other regions of the world. Five cooling events with abrupt mean annual SST drops, which occur at similar to 300-600, 1400, 3100, 4600-5100 and 8200yr BP, are recognized during the last 10,500yrs. Comparison of our results with records of GISP2 ice core and marine sediment in North Atlantic region suggests these cooling events are strongly coupled, which implies a possible significant climatic correlation between high- and low-latitude areas. (C) 2007 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Well-dated, high-resolution records of planktonic foraminifera and oxygen isotopes from two sediment cores, A7 and E017, in the middle Okinawa Trough reveal strong and rapid millennial-scale climate changes since similar to 18 to 17 thousand years before present (kyr B.P.). Sedimentation rate shows a sudden drop at similar to 11.2 cal. kyr B.P. due to a rapid rise of sea level after the Younger Dryas (YD) and consequently submergence of the large continental shelf on the East China Sea (ECS) and the retreat of the estuary providing sediment to the basin. During the last deglaciation, the relative abundance of warm and cold species of planktonic foraminifera fluctuates strongly, consistent with the timing of sea surface temperature (SST) variations determined from Mg/Ca measurements of planktonic foraminifera from one of the two cores. These fluctuations are coeval with climate variation recorded in the Greenland ice cores and North Atlantic sediments, namely Heinrich event 1 (H1), Bolling-Allerod (B/A) and YD events. At about 9.4 kyr B.P., a sudden change in the relative abundance of shallow to deep planktonic species probably indicates a sudden strengthening of the Kuroshio Current in the Okinawa Trough, which was synchronous with a rapid sea-level rise at 9.5-9.2 kyr B.P. in the ECS, Yellow Sea (YS) and South China Sea (SCS). The abundance of planktonic foraminiferal species, together with Mg/Ca based SST, exhibits millennial-scale oscillations during the Holocene, with 7 cold events (at about 1.7, 2.3-4.6, 6.2, 7.3, 8.2, 9.6, 10.6 cal. kyr BP) superimposed on a Holocene warming trend. This Holocene trend, together with centennial-scale SST variations superimposed on the last deglacial trend, suggests that both high and low latitude influences affected the climatology of the Okinawa Trough. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Late Pliocene is thought to be characterized by the simultaneous intensification of both the East Asian winter monsoon (EAWM) and East Asian summer monsoon (EASM). However, the evolution of the EASM during the Pliocene remains still controversial and only little is known about the dynamics of the EASM during the Pliocene on orbital time scales. Here we use clay mineral assemblages in sediments from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) to obtain proxy records of past changes in the EASM climate during the Pliocene. Provenance analysis suggests that illite, chlorite and kaolinite originated mainly from the Mekong River drainage area. Smectite was derived mainly from the Indonesian islands. The kaolinite/illite ratio and the chemical index of alteration (CIA) of siliciclastic sediments allowed us to reconstruct the history of chemical weathering and physical erosion of the Mekong River drainage area and thus, the evolution of,the EASM during the Pliocene. Our clay minerals proxy data suggests a stronger EASM during the Early Pliocene than during the Late Pliocene. We propose that the long-term evolution of the EASM has been driven by global cooling rather than the uplift of the Tibetan Plateau. Spectral analysis of kaolinite/ illite ratio displays a set of strong periodicities at 100 ka, 30 ka, 28 ka, 25 ka, and 22 ka. with no clear obliquityrelated signal. Our study suggests that the Pliocene EASM intensity on orbital time scales is not only controlled by the Northern Hemisphere summer insolation, but also strongly influenced by equatorial Pacific ENSO-like ocean atmosphere dynamics. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
128 samples from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea were analyzed for grain size, clay minerals, biogenic opal content and quartz in order to reconstruct changes in East Asian monsoon climate since 8.5 Ma. An abrupt change of terrigenous mass accumulation rate (MAR), clay mineral assemblage, median grain size and biogenic opal MAR about 5.2 Ma suggests that between 8.5-5.2 Ma the source of terrigenous sediment was mainly in the region of surface uplift and basaltic volcanism in southern Vietnam. A simple model of East Asian summer monsoon evolution was based on the clay/feldspar ratio, kaolinite/chlorite ratio and biogenic opal MAR. The summer monsoon has two periods of maximum strength at 8.5-7.6 Ma and 7.1-6.2 Ma. Subsequently, there was a relatively stable period at 6.2-3.5 Ma, continued intensification about 3.5-2.5 Ma, and gradually weakening after 2.5 Ma. Since I Ma the monsoon has intensified, with remarkable high-frequency and amplitude variability. Simultaneous increase in sedimentation rates at ODP Sites 1143, 1146 and 1148, as well as in MAR of terrigenous materials, quartz, feldspar and clay minerals at ODP Site 1143 at 3.5-2.5 Ma, may be the erosional response to both global climatic deterioration and the strengthening of the East Asian summer monsoon after about 3-4 Ma. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We detected the responses of summertime extreme wave heights (H-top10, average of the highest 10% of significant wave heights in June, July and August) to local climate variations in the East China Sea by applying an empirical orthogonal function analysis to Htop10 derived from the WAVEWATCH- III wave model driven by 6 hourly sea surface wind fields from ERA-40 reanalysis over the period 1958-2002. Decreases in H-top10 in the northern East China Sea ( Yellow Sea) correspond to attenuation of the East Asian Summer Monsoon, while increases in the south are primarily due to enhancement of tropical cyclone activities in the western North Pacific.
Resumo:
Based on analysis of NCEP reanalysis data and SST indices of the recent 50 years, decadal changes of the potential predictability of ENSO and interannual climate anomalies were investigated. Autocorrelation of Nino3 SST anomalies (SSTA) and correlation between atmospheric anomalies fields and Nino3 SSTA exhibit obvious variation in different decades, which indicates that Nino3 SSTA-related potential predictability of ENSO and interannual climate anomalies has significant decadal changes. Time around 1977 is not only a shift point of climate on the interdecadal time scale but also a catastrophe point of potential predictability of ENSO and interannual climate. As a whole, ENSO and the PNA pattern in boreal winter are more predictable in 1980s than in 1960s and 1970s, while the Nino3 SSTA-related potential predictability of the Indian monsoon and the East Asian Monsoon is lower in 1980s than in 1960s and 1970s.
Resumo:
A major problem which is envisaged in the course of man-made climate change is sea-level rise. The global aspect of the thermal expansion of the sea water likely is reasonably well simulated by present day climate models; the variation of sea level, due to variations of the regional atmospheric forcing and of the large-scale oceanic circulation, is not adequately simulated by a global climate model because of insufficient spatial resolution. A method to infer the coastal aspects of sea level change is to use a statistical ''downscaling'' strategy: a linear statistical model is built upon a multi-year data set of local sea level data and of large-scale oceanic and/or atmospheric data such as sea-surface temperature or sea-level air-pressure. We apply this idea to sea level along the Japanese coast. The sea level is related to regional and North Pacific sea-surface temperature and sea-level air pressure. Two relevant processes are identified. One process is the local wind set-up of water due to regional low-frequency wind anomalies; the other is a planetary scale atmosphere-ocean interaction which takes place in the eastern North Pacific.
Resumo:
The increasing trend of air temperature along with the climate warming has been accepted gradual-ly by scientists and by the general public. Qinghai-Xizang Plateau, a unique geographic unit due to high-altitude climate, is one of the most susceptible regions to climate warming. Its ecosystem is very fragile and sensi-tive to climate change. In order to get a better understanding of the impacts of climate warming on the nutrient contents of herbage grown in Qinghai-Xizang Plateau, a simulative study was implemented at Daban Moutain by using temperature differences resulted from sites selected at different altitudes and nutrient contents and in vitro digestibility were determined for assessing the quality of the grown herbage. There were significant downtrends in crude protein (CP), ether extract (EE) and nitrogen free extract (NFE) contents of herbage along with the increase of temperature. It had a positive correlation between temperature and content of acid detergent fibre (ADF), acid detergent lignin (ADL) in herbage. In vitro digestibility of herbage decreased along with the in-crease of temperature. The results of this study indicated that climate warming significantly influence nutrient contents and in vitro digestibility of herbage grown in Qinghai-Xizang Plateau. It is suggested that the future climate warming especially the gradual rise of the night temperature could cause negative effect on herbage quality grown in Qinghai-Xizang Plateau by decreasing CP, EE, and NFE contents and increasing some indi-gestible ingredients such as crude fibre (CF), neutral detergent fibre (NDF), ADF, and ADL. This, conse-quently, decreases the ruminant assimilation ability.
Resumo:
Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
Resumo:
The eddy covariance technique provides measurements of net ecosystem exchange (NEE) Of CO2 between the atmosphere and terrestrial ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number Of CO2 eddy flux tower sites. In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai-Tibetan Plateau, China. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland ecosystems in Qinghai-Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key component for the study of the carbon cycle at regional and global scales. (c) 2006 Elsevier Inc. All rights reserved.