338 resultados para Gambusia affinis, mass
Resumo:
IEECAS SKLLQG
Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China
Resumo:
A pilot experiment of mass measurement was performed at CSRe with the method of isochronous mass spectrometry. The secondary fragments produced via RIBLL2 with the primary beam of 400 MeV/u, Ar-36 delivered by CSRm were injected into CSRe. The revolution periods of the stored ions, which depend on the mass-to-charge ratios of the stored ions, were measured with a time-of-flight detector system. The results show that the mass resolution around 8 x 10(-6) for Delta m/m is achieved.
Resumo:
A Penning trap, which can measure the atomic masses with the highest precision, is one of the most important facilities in nuclear physics research nowadays. The precision mass data play an important role in the studies of nuclear models, mass formulas, nuclear synthesis processes in the nuclear astrophysics, symmetries of the weak interaction and the conserved vector current (CVC) hypothesis. The status of high precision mass measurement around the world, the basic principle of Penning trap and the basic information about the LPT (Lanzhou Penning Trap) are introduced.
Resumo:
By including the scalar isovector meson delta, we extend the relativistic mean field model and the one-boson exchange model of changing K-meson in the framework of Schaffner's relativistic mean field model. We re-consider the coupling constants for the interactions between the meson and the baryon and the interactions of the K meson with different mesons as well in various parameter sets. Using our model, we discuss the effective masses of K mesons in the hyperon-rich nuclear matter. We find that the density modification of the K meson mass in the strange nuclear matter is smaller than that in the pure nuclear matter. The influence of the scalar isovector meson 6 on the effective mass of kaon is rather evident. But the extent of the influence is different in different parameter sets.
Resumo:
Based on the relativistic chiral effective field theory, we study the effective mass of the Delta-resonance in medium by investigating the self-energy of the Delta-resonance related to the pi N decay channel in symmetric nuclear matter. We find that the effective mass of Delta-resonance decreases evidently with increasing nuclear density rho. In our calculation, we also consider the influence of the shifts of the nucleon mass, pion mass and its decay constant due to the restoration of chiral symmetry in medium. The results are roughly consistent with the data given by Lawrence Berkeley National Laboratory.
Resumo:
In the concept of dinuclear system, the quasifission rate from Kramers formula has been incorporated in the master equation in order to study the competition between fusion and qusifission. Mass yields of quasifission products of the three reactions Ca-48 + Pu-244, Ca-48 + U-238 and Fe-58 + Th-232 have been calculated, and the experimental data are reproduced very well, which is a critical test for the existing fusion model. Also we have shown the time evolution of the mass distributions of quasifission products, which provides valuable information of the process of competition between fusion and quasifission.
Resumo:
This study reports a method for high-frequency shoot organogenesis and plant establishment of Potentilla potaninii Wolf. Hypocotyl and cotyledon explants of P. potaninii were cultured on Murashige and Skoog (MS) medium supplemented with various concentrations of benzyladenine (BA) and alpha-naphthaleneacetic acid (NAA) to induce adventitious shoot formation for micropropagation. The highest frequency of adventitious shoot regeneration was achieved from hypocotyl and cotyledon explants grown on MS medium supplemented with 5.0 mg l(-1) BA and 1.0 mg l(-1) NAA. The regenerated shoots rooted most efficiently on half-strength MS medium supplemented with 1.0 mg l(-1) NAA and 0.5 mg l(-1) indole-3-acetic acid or indole-3-butyric acid. The acclimatized plants with normal morphology and growth characters flowered and set seeds in the following year.
Resumo:
In the framework of the finite temperature Brueckner-Hartree-Fock approach including the contribution of the microscopic three-body force, the single nuclear potential and the nucleon effective mass in hot nuclear matter at various temperatures and densities have been calculated by using the hole-line expansion for mass operator, and the effects of the three-body forces and the ground state correlations on the single nucleon potential have been investigated. It is shown that both the ground state correlations and the three-body force affect considerably the density and temperature dependence of the single nucleon potential. The rearrangement correction in the single nucleon potential is repulsive and it reduces remarkably the attraction of the single nucleon potential in the low-momentum region. The rearrangement contribution due to the ground state correlations becomes smaller as the temperature rises up and becomes larger as the density increases. The effect of the three-body force on the ground state correlations is to reduce the contribution of rearrangement. At high densities, the single nucleon potential containing both the rearrangement correction and the contribution of the three-body force becomes more repulsive as the temperature increases.