157 resultados para Fracture-Toughness
Resumo:
For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.
Resumo:
This paper summarizes the recent development of dynamic fracture in China. The review covers analytical and numerical results on elastodynamic crack fields in 3D and layered media; experimental and theoretical research on dynamic mechanical properties of rocks and advanced materials; transient effects on ideally plastic crack-tip fields when the inertia forces are not negligible.
Resumo:
A general theory of fracture criteria for mixed dislocation emission and cleavage processes is developed based on Ohr's model. Complicated cases involving mixed-mode loading are considered. Explicit formulae are proposed for the critical condition of crack cleavage propagation after a number of dislocation emissions. The effects of crystal orientation, crack geometry and load phase angle on the apparent critical energy release rates and the total number of the emitted dislocations at the initiation of cleavage are analysed in detail. In order to evaluate the effects of nonlinear interaction between the slip displacement and the normal separation, an analysis of fracture criteria for combined dislocation emission and cleavage is presented on the basis of the Peierls framework. The calculation clearly shows that the nonlinear theory gives slightly high values of the critical apparent energy release rate G(c) for the same load phase angle. The total number N of the emitted dislocations at the onset of cleavage given by nonlinear theory is larger than that of linear theory.
Resumo:
In the present paper, based on the theory of dynamic boundary integral equation, an optimization method for crack identification is set up in the Laplace frequency space, where the direct problem is solved by the author's new type boundary integral equations and a method for choosing the high sensitive frequency region is proposed. The results show that the method proposed is successful in using the information of boundary elastic wave and overcoming the ill-posed difficulties on solution, and helpful to improve the identification precision.
Resumo:
The generalized Shmuely Difference Algorithm (GSDA) is presented here to analyze the dynamic fracture performance of orthogonal-anisotropic composite materials, such as glass fibre reinforced phenolplast. The difference recurrence Formulae and boundary condition difference extrapolation formulae are derived and programmed. The dynamic stress intensity factors (DSIF) of the isotropic and anisotropic centrally cracked plates are computed respectively using GSDA and compared with that published previously. GSDA is proved effective and reliable. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
A new mechanics model based on Peierls concept is presented in this paper, which can clearly characterize the intrinsic features near a tip of an interfacial crack. The stress and displacement fields are calculated under general combined tensile and shear loadings. The near tip stress fields show some oscillatory behaviors but without any singularity and the crack faces open completely without any overlapping when remote tensile loading is comparable with remote shear loading. A fracture criterion for predicting interface toughness has been also proposed, which takes into account for the shielding effects of emitted dislocations. The theoretical toughness curve gives excellent prediction, as compared with the existing experiment data.
Resumo:
The interlaminar fracture behaviour of carbon fibre-reinforced bismaleimide (BMI) composites prepared by using a new modified BMI matrix has been investigated by various methods. Laminates of three typical stacking sequences were evaluated. Double cantilever beam, end-notch flexure and edge-delamination tension tests were conducted under conventional conditions and in a scanning electron microscope. The strain energy release rates in Mode I and Mode III G(lc) and G(llc), as well as the total strain energy release rate, G(mc), have been determined and found to be higher than those for laminates with an epoxy matrix. Dynamic delamination propagation was also studied. The toughening mechanisms are discussed.
Resumo:
A model of dynamical process and stochastic jump has been put forward to study the pattern evolution in damage-fracture. According to the final states of evolution processes, the evolution modes can be classified as globally stable modes (GS modes) and evolution induced catastrophic modes (ElC modes); the latter are responsible for fracture. A statistical description is introduced to clarify the pattern evolution in this paper. It is indicated that the appearance of fracture in disordered materials should be depicted by probability distribution function.