274 resultados para Fibers.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An aromatic polyimide was synthesized via a one-step polycondensation reaction between biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-oxydianiline (ODA) in p-chlorophenol. The polyimide (BPDA-ODA) solution dopes were spun into fibers by means of dry-jet wet spinning. The as-spun fibers were drawn and treated in heating tubes for improving the mechanical properties. The thermal treatment on the fibers resulted in a relatively high tensile strength and modulus. Thermal mechanical analysis (TMA) was employed to study the linear coefficient of thermal expansion (CTE). Thermal gravimetry analysis (TGA) spectra showed that the BPDA-ODA fibers possessed an excellent property of thermo-oxidative degradation resistance. The sonic modulus E-s of the polyimide fibers was measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(L-lactide) (PLLA) and poly(epsilon-caprolactone) (PCL) ultrafine fibers were prepared by electrospinning. The influence of cationic and anionic surfactants on their enzymatic degradation behavior was investigated by measuring weight loss, molecular weight, crystallinity, and melting temperature of the fibers as a function of degradation time. Under the catalysis of proteinase K, the PLLA fibers containing the anionic surfactant sodium docecyl sulfate (SDS) exhibited a faster degradation rate than those containing cationic surfactant triethylbenzylammonium chloride (TEBAC), indicating that surface electric charge on the fibers is a critical factor for an enzymatic degradation. Similarly, TEBAC-containing PCL fibers exhibited a 47% weight loss within 8.5 h whereas SDS-containing PCL fibers showed little degradation in the presence of lipase PS. By analyzing the charge status of proteinase K and lipase PS under the experimental conditions, the importance of the surface charges of the fibers and their interactions with the charges on the enzymes were revealed. Consequently, a "two-step" degradation mechanism was proposed: (1) the enzyme approaches the fiber surface; (2) the enzyme initiates hydrolysis of the polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present study was to develop implantable BCNU-toaded poly(ethylene glycol)poly(L-lactic acid) (PEG-PLLA) diblock copolymer fibers for the controlled release of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). BCNU was well incorporated and dispersed uniformly in biodegradable PEG-PLLA fibers by using electrospinning method. Environmental Scanning Electron Microscope (ESEM) images indicated that the BCNU-loaded PEG-PLLA fibers looked uniform and their surfaces were reasonably smooth. Their average diameters were below 1500 nm. The release rate of BCNU from the fiber mats increased with the increase of BCNU loading amount. In vitro cytotoxicity assay showed that the PEG-PLLA fibers themselves did not affect the growth of rat Glioma C6 cells. Antitumor activity of the BCNU-loaded fibers against the cells was kept over the whole experiment process, while that of pristine BCNU disappeared within 48 h. These results strongly suggest that the BCNU/PEG-PLLA fibers have an effect of controlled release of BCNU and are suitable for postoperative chemotherapy of cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable poly(L-lactide) (PLA) ultrafine fibers containing nanosilver particles were prepared via electrospinning. Morphology of the Ag/PLA fibers and distribution of the silver nanoparticles were characterized. The release of silver ions from the Ag/PLA fibers and their antibacterial activities were investigated. These fibers showed antibacterial activities (microorganism reduction) of 98.5% and 94.2% against Staphylococcus aureus and Escherichia coli, respectively, because of the presence of the silver nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of surfactants and medical drugs on the diameter size and uniformity of electrospun poly(L-lactic acid) (PLLA) fibers were examined by adding various surfactants (cationic, anionic, and nonionic) and typical drugs into the PLLA solution. Significant diameter reduction and uniformity improvement were observed. It was shown that the drugs were capsulated inside of the fibers and the drug release in the presence of proteinase K followed nearly zero-order kinetics due to the degradation of the PLLA fibers. Such ultrafine fiber mats containing drugs may find clinical applications in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable poly(I-lactide) (PLLA) and poly(e-caprolactone) (PCL) were electrospun into ultrafine fibers. The technological parameters influencing the spinning process and morphology of the fibers obtained were examined. These parameters included solvent composition, addition of certain organic salts, molecular weight and concentration of the polymers, capillary diameter, air ventilation, and pressure imposed on the surface of the solution as well as electrostatic field. By properly choosing and adjusting these parameters, submicron PLLA and PCL fibers with a narrow diameter distribution were prepared. Scanning electronic microscopy was used to observe the morphology and diameter size of the fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, polyaniline (PANI) had been considered an intractable material, but it can be dissolved in some solvents. Therefore, it could be processed into films or fibers. A process of preparing a blend of conductive fibers of PANI/poly-omega-aminoun-decanoyle (PA11) is described in this paper. PANI in the emeraldine base was blended with PA11 in concentrated sulfuric acid (c-H,SO,) to form a spinning dope solution. This solution was used to spin conductive PANI/PA11 fibers by wet-spinning technology. As-spun fibers were obtained by spinning the dopes into coagulation bath water or diluted acid and drawn fibers were obtained by drawing the as-spun fibers in warm drawing bath water. A scanning electron microscope was employed to study the effect of the acid concentration in the coagulation bath on the microstructure of as-spun fibers. The results showed that the coagulating rate of as-spun fibers was reduced and the size of pore shrank with an increase in the acid concentration in the coagulation bath. The weight fraction of PANI in the dope solution also had an influence on the microstructure of as-spun fibers. The microstructure of as-spun fibers had an influence on the drawing process and on the mechanical properties of the drawn fibers. Meanwhile, the electrically conductive property of the drawn fibers with different percentage of PANI was measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI), a member of the intrinsically conducting polymer (ICPs) family, was blended with polyamide-11 (polyco-aminoundecanoyle) in concentrated sulfuric acid. The above solution was used to spin conductive PANI/polyamide-11 fibers by wet-spinning technology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to study the two-phase morphology of the conductive PANI/polyamide-11 fibers. The micrographs of the cross-section, the axial section and the surface of the monofilament demonstrated that the two blend components were incompatible. The morphology of PANI in the fibers was of fibrillar form, which was valuable for producing conducting channels. The electrical conductivity of the fibers was from 10(-6) to 10(-1) S/cm with the different PANI fraction and the percolation threshold was about 5 wt.%. By comparing the two blend systems of PANI/Polyamide-11 fibers and carbon black filled poly(ethylene terephthalate) (PET) fibers, it was shown that the morphology of the conductive component had an influence on electrical conductivity, The former had higher conductivity and lower percolation threshold than the latter. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using high molecular weight (M-n=80,000) Poly(hexano-6-lactone) (PCL'), tough and high tenacity PCL monofilaments with various draw ratios (undrawn to 9 times drawn) were prepared by melt-spinning. The relationship between microstructure and properties of the PCL fibers is described in this current IUPAC Technical Report. Analysis of microstructure of the drawn PCL fibers by wide-angle X-ray diffraction revealed typical c-axis orientation with an increase in crystallinity. It was also supported by sonic velocity measurements. The thermal, mechanical, and dynamic mechanical properties of the PCL fibers were affected significantly by draw ratio. DSC thermograms showed that the melting temperature and the enthalpy of fusion increased with draw ratio. The temperature dependence curves of dynamic viscoelasticity showed that the temperature at tan delta peak of alpha dispersion corresponding to the glass transition temperature shifted toward higher temperature and the peak value of tan delta decreased with draw ratio. The dynamic storage modulus and the sonic modulus increased with draw ratio. These results are due to the increase in crystallinity and molecular orientation with drawing, and are responsible for an increase in tensile tenacity as well as knot tenacity of the PCL fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the 'average stress in the matrix' concept of Mori and Tanaka (:Mori, T., Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metall. 21, 571-580) a micromechanical model is presented for the prediction of the elastic fields in coated inclusion composites with imperfect interfaces. The solutions of the effective elastic moduli for this kind of composite are also obtained. In two kinds of composites with coated particulates and fibers, respectively, the interface imperfections are takes to the assumption that the interface displacement discontinues are linearly related to interface tractions like a spring layer of vanishing thickness. The resulting effective shear modulus for each material and the stress fields in the composite are presented under a transverse shear loading situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description, damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The material response and failure mechanism of unidirectional metal matrix composite under impulsive shear loading are investigated in this paper. Both experimental and analytical studies were performed. The shear strength of unidirectional C-f/A356.0 composite and A356.0 aluminum alloy at high strain rate were measured with a modified split Hopkinson torsional bar technique. The results indicated that the carbon fibers did not improve the shear strength of aluminum matrix if the fiber orientation aligned with the shear loading axis. The microscopic inspection of the fractured surface showed a multi-scale zigzag feature which implied a complicated shear failure mechanism in the composite. In addition to testing, the micromechanical stress field in the composite was analyzed by the generalized Eshelby equivalent method (GEEM). The influence of cracking in matrix on the micromechanical stress field was investigated as well. The results showed that the stress distribution in the composite is quite nonhomogeneous and very high shear stress concentrations are found in some regions in the matrix. The high shear stress concentration in the matrix induces tensile cracking at 45 degrees to the shear direction. This in turn aggravates the stress concentration at the fiber/matrix interface and finally leads to a catastrophic failure in the composite. From the correlation between the analysis and experimental results, the shear failure mechanism of unidirectional C-f/A356.0 composite can be elucidated qualitatively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the dynamic behaviors of several kinds of high strength fibers, including Kevlar, UHMPE, glass fibers, carbon fibers etc., are investigated experimentally, with a Split Hopkinson Tension Bar (SHTB). The effect of strain rate on the modulus, strength, failure strain and failure characteristics of fibers, under impact loading, is analyzed with the relative stress vs. strain curves. At the same time, the mechanism about the rate dependence of mechanical behaviors of various fibers is discussed based on the understanding on the microstructures and deformation models of materials. Some comments are also presented on the decentralization of experimental results, and a new method called traveling wave method is presented to increase the experimental accuracy. Research results obtained in this paper will benefit to understand the energy absorption and to build up the constitutive law of protective materials reinforced by high strength fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the dynamic shear strength of a unidirectional C/A356.0 composite and A356.0 alloy, respectively, are measured with a split Hopkinson torsional bar (SHTB) technique. The results indicate that the carbon fibers make very little contribution to the enhancement of the shear strength of the matrix material. The microscopic inspections on the fracture surface of the composite show a multi-scale zigzag feature. This implies that there is a complicated shear failure mechanism in the unidirectional carbon/aluminum composite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact response and failure mechanisms of ultrahigh modulus polyethylene (UHMPE) fiber composites and UHMPE fiber-carbon fiber hybrid composites have been investigated. Charpy impact, drop weight impact and high strain rate impact experiments have been performed in order to study the impact resistance, notch sensitivity, strain rate sensitivity and hybrid effects. Results obtained from dynamic and quasi-static measurements have been compared. Because of the ductility of UHMPE fibers, the impact energy absorption of UHMPE fiber composites is very high, thereby leading to excellent damage tolerance. By hybridizing with UHMPE fibers, the impact properties of carbon fiber composites can be greatly improved. The impact and shock failure mechanisms of these composites are discussed.