336 resultados para FT-IR microscopy
Resumo:
The degradation behavior of polyimide (PMDA-ODA) induced by nitrogen laser irradiation was studied. The changes in the surface morphology and the composition of the irradiated polyimide films were examined by scanning electron microscopy, X-ray photoelectron spectroscopy and FT-IR spectroscopy. The initial reaction was achieved by photochemical degradation of polyimide in the highly electronic excited state by the absorption of a second 337 nm photon. Atmospheric oxygen sequentially reacted with the produced radicals to form a highly oxidized layer. The formation of carbonyl group was enhanced by the heat remaining on the irradiated polyimide film surfaces. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Polyaniline nanoparticles were prepared on a highly oriented pyrolytic graphite (HOPG) surface from dilute polyaniline acidic solution (1 mM aniline + 1 M HClO4) using a pulsed potentiostatic method. Electrochemistry, Fourier transform infrared external reflection spectroscopy (FT-IR-ERS), X-ray photoelectron spectroscopy (XPS) and tapping-mode atomic force microscopy (TMAFM) were: used to characterize the composition and structure of the polyaniline nanoparticles. FT-IR-ERS and XPS results revealed that the polyaniline was in its emeraldine form. TMAFM measurement showed that the electropolymerized polyaniline nanoparticles dispersed on the:HOPG surface with a coverage of about 10(10) cm(-2). These nanoparticles were disk-shaped having a height of 10(-30) Angstrom and an apparent diameter varying from 200 to 600 Angstrom. The particle dimensions increased with the electropolymerization charge (Q) over the interval from 5.7 to 19.3 mu C cm(-2) (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The possibility of the formation of Langmuir-Blodgett (LB) films with dimethyldioctadecylammonium (DODA) after the addition of cobalt(II)-substituted Dawson-type tungstodiphosphate anion (briefed as (H2O)(CoP2W17O618-)-P-11) in the subphase has been explored. Marked modifications of the compression isotherms are observed when this anion is dissolved in the subphase, which demonstrates that the polyanions interact with the monolayers. LB films have been readily obtained from this system. The adsorption Fourier transform IR (FT IR) spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD) and cyclic voltammetry (CV) have been used to investigate the morphological and molecular structure of the deposited film. The FT IR results showed the presence of the polyanion within the LB films, and the shift for its characteristic bands may be related to the presence of positively charged DODA. AFM measurement reveals that the LB films of DODA/(H2O)(CoP2W17O618)-P-II are regularly and uniformly deposited on the substrate. XRD experiments prove that the lamellar structure of the LB films of DODA/(H2O)(CoP2W17O618-)-P-II is well-defined. The LB films of DODA/(H2O)(CoP2W17O618-)-P-II immobilized onto an indium-oxide (ITO) glass, in aqueous solutions of pH 2.0-5.0, show quite facile redox reactions even for multilayers. All the experiments carried out in the present study suggest that the new materials of heteropolyanions can be formed by LB techniques and beneficial physicochemical properties of heteropolyanions can be maintained/enhanced through molecular-level design. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Blends of poly(vinyl methyl ether) (PVME) and poly(methyl methacrylate) (PMMA) compatibilized by poly(styrene-block-methyl methacrylate) (P(S-b-MMA)) ale studied by FT-IR, DSC, excimer fluorescence spectrometry, and scanning electron microscopy (SEM). In FT-IR measurement the ratio of absorption intensity at 1107 cm(-1) to that at 1085 cm(-1) (I-1107/I-1085) reaches a minimum at about 10wt% block copolymer content. DSC results show that the glass transition temperature of PVME in the blends has a maximum at 10 wt% copolymer content. In plots of the ratio of excimer-to-monomer fluorescence emission intensities (I-E/I-M) VS block copolymer content, I-E/I-M increases rapidly above 10%. Ail these phenomena show that PS block chains penetrate into PVME: domains on addition of block copolymer. Above 10% copolymer content, block copolymer chains tend to form micelles in bulk phase.
Resumo:
Thiol-functionalized mesoporous ethane-silicas with large pore were synthesized by co-condensation of 1,2-bis(trimethoxy-sily)ethane (BTME) with 3-mercaptopropyltrimethoxysilane (MPTMS) using nonionic oligomeric polymer C1H (OCH(2)-CH(2))(10)OH (Brij-76) or poly(alkylene oxide) block copolymer (P123) as surfactant in acidic medium. The results of powder X-ray diffraction (XRD), nitrogen gas adsorption, and transmission electron microscopy (TEM) show that the resultant materials have well-ordered hexagonal mesoscopic structure with uniform pore size distributions. (29)Si MAS NNR, (13)C CP-MAS NMR. FT-IR, and UV Raman spectroscopies confirm the attachment of thiol functionalities in the mesoporous ethane-sificas. The maximum content of the attached thiol group (-SH) in the mesoporous framework is 2.48mmol/g. The ordered mesoporous materials are efficient Hg(2+) adsorbents with almost every -SH site accessible to Hg(2+). In the presence of various kinds of heavy metal ions such as Hg(2+), Cd(2+), Zn(2+), Cu(2+) and Cr(3+), the materials synthesized using poly(alkylene oxide) block cooollxmier (Pluronic 123) g(2+), as surfactant show almost similar affinity to Hg(2+), Cd(2+), and Cr(3+), while the materials synthesized using ofigomeric polymer C(18)H(37)(OCH(2)CH(2))(10)OH (Brij-76) as surfactant exhibit high selectivity to Hg(2+). (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Highly ordered mesoporous ethanesilica (MES) with 2D hexagonal structure was synthesized from 1,2-bis(trimethoxysilyl) ethane under neutral conditions for the first time. Divalent salts, such as NiCl2, MgCl2, ZnCl2, ZnSO4 and Zn(NO3)(2), were used to help the formation of the ordered mesostructure. The MES samples were characterized by powder X-ray diffraction, nitrogen sorption, transmission electron microscopy, FT-IR, C-13 and Si-29 solid-state NMR and thermal gravimetric analysis. A phase transition from a disordered wormhole-like structure to an ordered P6mm structure was observed upon the addition of inorganic salts. The pore size of the MES decreases from 4.7 to 3.9 nm with increasing content of the inorganic salts. Fluoride was also found to be important for the formation of ordered MES under neutral conditions.
Resumo:
Co3O4 nanocrystals with average particle sizes of 30 and 50 run were synthesized using cobalt nitrate as precursor, and were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. Catalytic oxidation of cyclohexane with molecular oxygen was studied over Co3O4 nanocrystals. These catalysts showed obviously higher activities as compared to Co3O4 prepared by the conventional methods, Co3O4/Al2O3, or homogeneous cobalt catalyst under comparable reaction conditions. The 89.1% selectivity to cyclohexanol and cyclohexanone at 7.6% conversion of cyclohexane was realized over 50 nm sized Co3O4 nanocrystals at 393 K for 6 h. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Three kinds of new nickel(II) complexes of alpha-isoxazolylazo-beta-diketones with blue-violet light absorption were synthesized. Their structures were postulated based on elemental analysis, MS and FT-IR spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. The absorption properties and thermal stability of these complexes were discussed. The static optical recording test for high density digital versatile disc-recordable (HD-DVD-R) system was also studied. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two new azo dyes of alpha-isoxazolylazo-beta-dilcetones and their Ni(II) and Cu(II) complexes with blue-violet light wavelength were synthesized using a coupling component, different diazo components and metal (II) ions (Ni2+ and Cu2+). Based on the elemental analysis, MS spectra and FT-IR spectral analyses, azo dyes were unequivocally shown to exist as hydrazoketo and azoenol forms which were respectively obtained from the solution forms and from the solid forms. The action of sodium methoxide (NaOMe) on azo dyes in solutions converts hydrazoketo form into azoenol form, so azo dyes are coordinated with metal (II) ions as co-ligands in the azoenol forms. The solubility of all the compounds in common organic solvents such as 2,2,3,3-tetrafluoro-1-propanol (TFP) or chloroform (CHCl3) and absorption properties of spin-coating thin films were measured. The difference of absorption maxima from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. It is found that these new metal (II) complexes had potential application for high-density digital versatile disc-recordable (HD-DVD-R) system due to their good solubility in organic solvents, reasonable and controllable absorption spectra in blue-violet light region and high thermal stability. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel azo dye containing isoxazole ring and beta-diketone derivative (TIAD) and its two nickel (II) complexes (Ni (II)-ETIAD and Ni (II)-HTIAD) were synthesized in order to obtain a blue-violet light absorption and better thermal stability as a promising organic storage material for next generation of high density digital versatile disc-recordable (HD-DVD-R) systems that uses a high numerical aperture of 0.85 at 405 nm wavelength. Their structures were confirmed on the basis of elemental analysis, MS, FT-IR, UV-Vis and magnetic data. Their solubility in 2,2,3,3-tetrafluoro-1-propanol (TFP) and absorption properties of thin film were measured. The difference of absorption maximum from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Three kinds of metal(II) tetraazaporphyrin complexes with blue-violet and red light wavelength absorption were synthesized by refluxing tetraazaporphyrin ligand and different metal(II) ions, respectively. Their structures were confirmed by elemental analysis, LDI-TOF-MS, FT-IR and UV-Vis. The solubility of metal(II) tetraazaporphyrin complexes in organic solvents and absorption properties of their chloroform solution and films on K9 glass in the region 250-800 nm were measured. The influence on the difference of absorption maximum from metal(II) tetraazaporphyrin complexes to tetraazaporphyrin ligand by different metal(II) ions was studied. In addition, the thermal stability of the complexes was also evaluated. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Thiazolyl heterocyclic azo dye and its metal (Ni2+, Co2+)-azo complexes were synthesized. Their structures were confirmed by elemental analysis, UV-VIS absorption spectra, FT-IR, H-1 NMR and MALDI-MS. The thermal properties of metal complexes were studied by DSC-TGA. The optical constants (complex refractive index N=n + ik) and thickness of the complex thin films on polished single-crystal silicon substrates were investigated on a scanning ellipsometer. Results indicate that thiazolyl metal-azo complexes possess good optical and thermal properties. They would be a promising recording medium candidate for NVD with the Super-resolution near field structure (Super-RENS) technology. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Two kinds of nickel(II) and copper(II) P-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A new chelating ligand, 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-N-(2,4-dimethylphenyl)-3-oxobutanamide (HL), and its four binuclear transition metal complexes, M-2(L)(2) (mu-OCH3)(2) [M = Ni(II), Co(II), Cu(II), Zn(II)], were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, H-1 NMR, MALDI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using the spin-coating method and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC. Different thermodynamic and kinetic parameters namely activation energy (E
Resumo:
合成了2-(2-氨基-6-乙氧基苯并噻唑基偶氮)-5-(N,N-二乙基氨基)三氟甲基磺酰苯胺偶氮染料(EBTDATFS)及其与乙酸镍、乙酸钴、乙酸铜、乙酸锌等金属盐鏊合的金属鏊合物。通过红外光谱、紫外-可见吸收光谱和MALDI质谱等对染料及其金属鏊合物进行了结构表征;使用旋涂方法在K9玻璃和抛光的单晶硅基片上制备薄膜;研究了镍金属鏊合物的热学性能;使用椭偏仪研究了Ni和Zn鏊合物的光学常数。结果表明:4种金属鏊合物薄膜最大吸收光谱为621-629nm,且长波边吸收峰陡峭;TGA-DSC测试结果表明镍金属鏊