99 resultados para Excited Society


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiative lifetimes of eight excited levels of thulium have been measured with the method of stepwise excitation from the 4f13(F-degrees-7/2)6s2(1S0)\7/2\ ground state to the states studied using two pulsed dye lasers. Optical transients were recorded through observing fluorescences and evaluated with regard to the decay time. The accuracy of the measured lifetime values is about 10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generally speaking, productions of thermally-assisted and stepwise fluorescence are the consequence of energy transfer caused by particle collision. In some circumstances, energy transfer caused by particle collision is considerably intense. We have ever used the fluorescence produced by energy transfer of particle collision to measure the branching ratios in the atomic transitions and acquired good results. To our knowledge, the systematic in

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ⅰ. INTRODUCTIONLaser-excited atomic fluorescence spectrometry in hollow cathode discharge(HCD) has been widely used in the research field of laser spectroscopy in recent years. Similar to traditional method, information obtained in the researches was direct line nonresonance fluorescence arising from the resonantly transitional upper level. Attention has not been sufficiently paid to the phenomenon of population change on the resonantly transitional lower level due to laser irradiation of plasma in HCD,...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of laser-field parameters, such as intensity and pulse width, on the population of molecular excited state is investigated by using the time-dependent wavepacket method. For a two-state system in intense laser fields, the populations in the upper and lower states are given by the wavefunctions obtained by solving the Schrodinger equation through split-operator scheme. The calculation shows that both the laser intensity and the pulse width have a strong effect on the population in molecular excited state, and that as the common feature of light-matter interaction (LMI), the periodic changing of the population with the evolution time in each state can be interpreted by Rabi oscillation and area-theorem. The results illustrate that by controlling these two parameters, the needed population in excited state of interest can be obtained, which provides the foundation of light manipulation of molecular processes. (C) 2005 Elsevier B.V. All rights reserved.