263 resultados para ENZYME MOLECULE ELECTROCHEMISTRY
Resumo:
In this paper, microperoxidase-11 (MP-11) was immobilized on glassy carbon electrode surface modified with chitosan by physical adsorption. The direct electrochemistry and the electrocatalytic behaviours to O-2 and the H2O2 of MP-11 on glassy carbon electrode modified with chitosan were characterized by cyclic voltammetry. The results indicate that MP-11 on modified electrode displays a quasi-reversible electrochemical process coupled with proton transfer in the phosphate buffer solutions(pH = 7.12). Direct electrochemical reaction of MP-11 on modified electrode has been realized. MP-11 on modified electrode can catalyze reduction for O-2 and H2O2. Both of the catalytic reductions are surface-controlled electrochemical process.
Resumo:
Multiwalled carbon nanotubes@SnO2-Au (MWCNTs@SnO2-Au) composite was synthesized by a chemical route. The structure and composition of the MWCNTs@SnO2-Au composite were confirmed by means of transmission electron microscopy, X-ray photoelectron and Raman spectroscopy. Due to the good electrocatalytic property of MWCNTs@SnO2-Au composite, a glucose biosensor was constructed by absorbing glucose oxidase (GOD) on the hybrid material. A direct electron transfer process is observed at the MWCNTs@SnO2-Au/GOD-modified glassy carbon electrode. The glucose biosensor has a linear range from 4.0 to 24.0 mM, which is suitable for glucose determination by real samples. It should be worthwhile noting that, from 4.0 to 12.0 mM, the cathodic peak currents of the biosensor decrease linearly with increasing the glucose concentrations in human blood. Meanwhile, the resulting biosensor can also prevent the effects of interfering species.
Resumo:
We report a sensitively amplified electrochemical aptasensor using adenosine triphosphate (ATP) as a model. ATP is a multifunctional nucleotide thatis most important as a "molecular currency" of intracellular energy transfer. In the sensing process, duplexes consisting of partly complementary strand (PCS1), ATP aptamer (ABA) and another partly complementary strand (PCS2) were immobilized onto Au electrode through the 5'-HS on the PCS1. Meanwhile, PCS2 was grafted with the Au nanoparticles (AuNPs) to amplify the detection signals. In the absence of ATP, probe methylene blue (MB) bound to the DNA duplexes and also bound to guanine bases specifically to produce a strong differential pulse voltammetry (DPV) signal. But when ATP exists, the ABA-PCS2 or ABA-PCS1 part duplexes might be destroyed, which decreased the amount of MB on the electrode and led to obviously decreased DPV signal.
Resumo:
in this Work, the suitability of 3,3',5,5'-tetramethylbenzidine sulfate (TMB) as the substrate of a DNAzyme catalytic system composed of a guanine-quadruplex DNA molecule and hemin was investigated. In the presence of H2O2, the hemin-DNA complex catalyzes the oxidation of TMB to produce two colored products, much like a peroxidase. The color-generating activity of this system could be influenced by several factors such as buffer type, pH value, DNA sequence, reaction time, and concentrations of both the hemin and H2O2. To illustrate the utility of this catalytic system, we designed a colorimetric assay, in which a synthetic oligonucleotide with a sequence complementary to the G-quadruplex DNA was used as the target. A detection limit of 1.86 nM was obtained. Our data have shown that TMB was an excellent colorimetric indicator that reported the peoxidase activities of the widely studied hemin-G-quadruplex DNAzyme system.
Resumo:
The macroscopic mechanical properties of polyaniline (PANI) lie mainly on two factors, the structure of molecular aggregations of polymers and the mechanical properties of a single polymer chain. The former factor is swell revealed; however, the latter is rarely studied. In this article, we have employed atomic force microscopy-based single-molecule force spectroscopy to investigate the mechanical properties of a kind of water-soluble PANI at a single-molecular level. We have carried out the study comparatively on single-chain-stretching experiments of oxidized, reduced, and doped PANI and obtained a full view of the single-chain elasticity of PANI in all these states. It is found that oxidized and reduced PANI chains are rigid, and the oxidized PANI is more rigid than the reduced PANI. Such a difference in single-chain elasticity can be rationalized by the molecular structures that are composed of benzenoid diamine and quinoid diimine its different proportions. The doped PANI has been found to be more flexible than the oxidized and reduced PANI, and the modified freely jointed chain parameters of doped PANI are similar with those of a common flexible-chain polymer.
Resumo:
Five new complexes based on rare-earth-radical [Ln(hfac)(3)(NIT-5-Br-3py)](2) (Ln=Pr (1), Sm (2), Eu (3), Tb (4), Tm (5); hfac = hexafluoroacetylacetonate; NIT-5-Br-3py = 2-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)-5-bromo-3-pyridine) have been synthesized and characterized by X-ray crystal diffraction. The single-crystal structures show that these complexes have similar structures, in which a NIT-5-Br-3py molecule acts as a bridging ligand linking two Ln(III) ions through the oxygen atom of the N-O group and nitrogen atom from the pyridine ring to form a four-spin system. Both static and dynamic magnetic properties were measured for complex 4, which exhibits single-molecule magnetism behavior.
Resumo:
A mononuclear tri-spin single-molecule magnet based on the rare earth radical [Tb(hfac)(3)(NITPhOEt)(2)] (NITPhOEt = 4'-ethoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been synthesized, structurally characterized and the alternating current signals show a slow relaxation of magnetization and frequency-dependent signals.
Resumo:
Triplex helical formation has been the focus of considerable interest because of possible applications in developing new molecular biology tools as well as therapeutic agents and the possible relevance of H-DNA structures in biology system. We report here that a small-molecule anticancer agent, coralyne, has binding preference to the less stable protonated triplex d(C+-T)(6):d(A-G)(6).d(C-T)(6) over duplex d(A-G)(6).d(C-T)(6) and shows different spectral and electrochemical characteristics when binding to triplex and duplex DNA, indicating that electrochemical technique can detect the less stable protonated triplex formation.
Resumo:
Structural complexity is an inherent feature of the human telomeric sequence, and it presents a major challenge for developing ligands of pharmaceutical interest. Recent studies have pointed out that the induction of a quadruplex or change of a quadruplex conformation on binding may be the most powerful method to exert the desired biological effect. In this study, we demonstrate a quadruplex ligand that binds selectively to different forms of the human telomeric G-quadruplex structure and regulates its conformational switch. The results show that not only can oxazine750 selectively induce parallel quadruplex formation from a random coil telomeric oligonucleotide, in the absence of added cations, it also can easily surpass the energy barrier between two structures and change the G-quadruplex conformation in Na+ or K+ solution. The combination of its unique properties, including the size and shape of the G-quadruplex and the small molecule, is proposed as the predominant force for regulating the special structural formation and transitions.
Resumo:
An enzyme responsive nanoparticle system that uses a DNA-gold nanoparticle (AuNP) assembly as the substrate has been developed for the simple, sensitive, and universal monitoring of restriction endonucleases in real time. This new assay takes advantage of the palindromic recognition sequence of the restriction nucleases and the unique optical properties of AuNPs and is simpler than the procedure previously described by by Xu et al. (Angew. Chem. Int. Ed. Engl. 2007, 46, 3468-3470). Because it involves only one type of ssDNA modified AuNPs, this assay can be directed toward most of the endonucleases by simply changing the recognition sequence found within the linker DNA. In addition, the endonuclease activity could be quantitatively analyzed by the value of the reciprocal of hydrolysis half time (t(1/2)(-1). Furthermore, our new design could also be applied to the assay of methyltransferase activity since the methylation of DNA inhibits its cleavage by the corresponding restriction endonuclease, and thus, this new methodology can be easily adapted to high-throughput screening of methyltransferase inhibitors.
Resumo:
We developed a coarse-grained yet microscopic detailed model to study the statistical fluctuations of single-molecule protein conformational dynamics of adenylate kinase. We explored the underlying conformational energy landscape and found that the system has two basins of attractions, open and closed conformations connected by two separate pathways. The kinetics is found to be nonexponential, consistent with single-molecule conformational dynamics experiments. Furthermore, we found that the statistical distribution of the kinetic times for the conformational transition has a long power law tail, reflecting the exponential density of state of the underlying landscape. We also studied the joint distribution of the two pathways and found memory effects.