289 resultados para ELECTRON-TRANSFER REACTION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified by ordered mesoporous silica-SBA-15 and Nafion. The sorption behavior of GOD immobilized on SBA-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that SBA-15 can facilitate the electron exchange between the electroactive center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and SBA-15 matrices displays direct, nearly reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 3.89 s(-1) in 0.1 M phosphate buffer solution (PBS) (pH 7.12).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6'-phosphatehexyl)fluorene-alt-1,4-phenylene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrochemical properties of a series of structurally related fullerooxazoles, [6,6] cyclic phenylimidate C-60 (1), 1,2-benzal-3-N-4-O-cyclic phenylimidate C-60 (2), and 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (3), are described, and the spectroscopic characterizations of their anionic species are reported. The results show that compounds I and 2 undergo retro-cycloaddition reactions that lead to the formation of C-60 and C61HPh, respectively, upon two-electron-transfer reduction. However, compound 3 demonstrates much more electrochemical stability as no retro-cycloaddition reaction occurs under similar conditions. Natural bond orbital (NBO) calculations on charge distribution show there is no significant difference among the dianions of 1, 2, and 3, indicating that the electrochemical stability of 3 is unlikely to be caused by the charge distribution difference of the dianions of three compounds. Examination on the crystal structure of compound 3 reveals close contacts of the C-H group with the heteroatoms (N and O) of cyclic phenylimidate, suggesting the existence of C-H center dot center dot center dot X (X = N, O) intramolecular hydrogen bonding among the addends, which is further confirmed by NBO analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dielectric definition of average energy gap E-g of the chemical bond has been calculated quantitatively in Eu3+-doped 30 lanthanide compounds based on the dielectric theory of chemical bond for complex structure crystals. The relationship between the experimental charge transfer (CT) energy of Eu3+ and the corresponding average energy gap E-g has been studied. The results show that the CT energy increases linearly with increasing of the average energy gap E-g. The linear model is obtained. It allows us to predict the CT position of Eu3+-doped lanthanide compounds with knowledge of the crystal structure and index of refraction. Applied to the Ca4GdO(BO3)(3):Eu and Li2Lu5O4(BO3)(3):Eu crystals, the predicted results of CT energies are in good agreement with the experimental values, and it can be concluded that the lowest CT energy in Li2Lu5O4(BO3)(3):Eu originates from the site of Lu1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The strong polar group, carboxylic acid, has triumphantly been introduced into ethylene and allylbenzene copolymers without obvious degradation or crosslinking via Friedel-Crafts (F-C) acylation reaction with glutaric anhydride (GA), succinic anhydride (SA) and phthalic anhydride (PA) in the presence of anhydrous aluminum chloride in carbon disulfide. Some important reaction parameters were examined in order to optimize the acylation process. In the optimum reaction conditions, almost all of the phenyls can be acylated with any anhydride. The microstructure of acylated copolymer was characterized by Fr-IR, H-1 NMR and H-1-H-1 COSY. All the peaks of acylated copolymers can be accurately attributed, which indicates that all the acylation reactions occur only at the para-positions of the substituent of the aromatic rings. The thermal behavior was studied by differential scanning calorimetry (DSC), showing that the melting temperatures (T(m)s) of acylated copolymers with GA firstly decrease slowly and then increase significantly with the increase of the amount of carboxyl acid groups.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A newfangled direct electrochemistry behavior of Cytochrome c (Cyt c) was found on glassy carbon (GC) electrode modified with the silicon dioxide (SiO2) nanoparticles by physical adsorption. A pair of stable and well-defined redox peaks of Cyt c ' quasi-reversible electrochemical reaction were obtained with a heterogeneous electron transfer rate constant of 1.66 x 10(-3) cm/s and a formal potential of 0.069 V (vs. Ag/AgCl) (0.263 V versus NHE) in 0.1 mol/L pH 6.8 PBS. Both the size and the amount of SiO2 nanoparticles could influence the electron transfer between Cyt c and the electrode. Electrostatic interaction which is between the negative nanoparticle surface and positively charged amino acid residues on the Cyt c surface is of importance for the stability and reproducibility toward the direct electron transfer of Cyt c. It is suggested that the modification of SiO2 nanoparticles proposes a novel approach to realize the direct electrochemistry of proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the interaction between La3+ and microperoxidase-11 (MP-11) in the imitated physiological solution was investigated with the electrochemical method, circular dichroism (CD) and ultraviolet-visible (UV-vis) absorption spectroscopy. It was found that the interaction ways between La3+ and MP-11 are different with increasing the molar ratio of La3+ and MP-11. When the molar ratio of La3+ and MP-11 is less than 2, La3+ mainly interacts with the metacetonic acid group of the heme group in the MP-11 molecules, causing the increase in the non-planarity of the porphyrin cycle in the heme group and the decrease in the content of the random coil conformation of MP-11. These structural changes would increase the exposure extent of the electrochemical active center of MP-11 and thus, La3+ can promote the electrochemical reaction of MP-11 and its electrocatalytic activity for the reduction of H2O2 at the glassy carbon (GC) electrode. However, when the molar ratio of La3+ and MP-11 is larger than 3, except binding to the carbonyl oxygen of the metacetonic acid group in the heme group, La3+ interacts also with the oxygen-containing groups of the amides in the polypeptide chains of the MP-11 molecules, leading to the increase in the contents of the random coil conformation in the peptide of the MP-11 molecule, comparing with that for the molar ratio of less than 2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A reinvestigation of the reaction between C-60(2-) and benzyl bromide in benzonitrile containing 0.1 M tetra-n-butylammonium perchlorate (TBAP) has shown that there are more reaction products than previously reported. Use of a silica rather than a "Buckyclutcher I" column for HPLC purification led to isolation of two previously unattained products in the reaction mixture, one of which was identified as 1,2-(PhCH2)(2)C-60 by UV-vis and NMR. The earlier incorrectly assigned 1,2-(PhCH2)(2)C-60 was identified as the methanofullerene C61HPh by X-ray single-crystal diffraction. The electrochemistry of genuine 1,2-(PhCH2)(2)C-60 shows that its first reduction potential in PhCN containing 0.1 M TBAP is cathodically shifted by 100 mV with respect to E-1/2 for reduction of 1,4-(PhCH2)(2)C-60, indicating that the addition pattern significantly affects the electrochemistry of derivatized C-60. Visible and near-IR spectra of the monoanion and dianion of 1,2-(PhCH2)(2)C-60 are also reported.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Calf thymus DNA was immobilized on functionalized glassy carbon, gold and quartz substrates, respectively, by the layer-by-layer (LBL) assembly method with a polycation QPVP-Os, a quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) as counterions. UV-visible absorption and surface plasmon resonance spectroscopy (SPR) showed that the resulting film was uniform with the average thickness 3.4 nm for one bilayer. Cyclic voltammetry (CV) showed that the total surface coverage of the polycations increases as each QPVP-Os/DNA bilayer added to the electrode surface, but the surface formal potential of Os-centered redox reaction shifts negatively, which is mainly attributed to the intercalation of redox-active complex to DNA chain. The electron transfer kinetics of electroactive QPVP-Os in the multilayer film was investigated by electrochemical impedance experiment for the first time. The permeability of Fe(CN)(6)(3-) in the solution into the multilayer film depends on the number of bilayers in the film. It is worth noting that when the multilayer film is up to 4 bilayers, the CV curves of the multilayer films display the typical characteristic of a microelectrode array.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a method for estimating the positions of charge transfer (CT) bands in Eu3+-doped complex crystals. The environmental factor ( he) influencing the CT energy is presented. he consists of four chemical bond parameters: the covalency, the bond volume polarization, the presented charge of the ligand in the chemical bond, and the coordination number of the central ion. These parameters are calculated with the dielectric theory of complex crystals. The relationship between the experimental CT energies and calculated environmental factors was established by an empirical formula. The calculated values are in good agreement with the experimental results. Such a relationship was confirmed by detailed analysis. In addition, our method is also useful to predict the charge-transfer position of any other rare earth ion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several factors can influence charge transport (CT)-mediated DNA, such as sequence, distance, base stacking, base pair mismatch, conformation, tether length, etc. However, the DNA context effect or how flanking sequences influence redox active drugs in the DNA CT reaction and later in DNA enzymatic repair and synthesis is still not well understood. The set of seven DNA molecules in this study have been characterized well for the study of flanking sequence effects. These DNA duplexes are formed from self-complementary strands and contain the common central four-base sequence 5'-A-G-C-T-3', flanked on both sides by either (AT)(n) or (AA)(n) (n = 2, 3, or 4) or AA(AT)(2). UV-vis, fluorescence, UV melting, circular dichroism, and cyclic voltammetry experiments were used to study the flanking sequence effect on CT-mediated DNA by using daunomycin or adriamycin cross-linked with these seven DNA molecules. Our results showed that charge transport was related to the flanking sequence, DNA melting free energy, and ionic strength. For (AA)(n) or (AT)(n) species of the same length, (AA)(n) series were more stable and more efficient CT was observed through the (AA)(n) series. The same trend was observed for (AA)(n) and (AT)(n) series at different ionic strengths, further supporting the idea that flanking sequence can result in different base stacking and modulate charge transport through these seven DNA molecules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel supramolecular inclusion complex of alpha-CD/C-60 was synthesized using anionic C-60. The reaction progress was monitored in situ by visible and near-IR spectroscopy. The obtained complex was characterized by UV-vis, C-13 NMR, MALDI-TOF, and cyclic voltammetry. The induction and dispersion forces are considered to be the major driving forces for the formation of a resulting alpha-CD/C-60(.-) inclusion complex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multilayers of anionic phosphotungstic acid (PTA) clusters and positively charged protonated poly(allylamine hydrochloride) (PAH) were assembled by layer-by-layer self-assembled method on Au electrode modified by 3-mercaptopropionic acid (3-MPA). The effect of the charge of the surface of the multilayer assembly on the kinetics of the charge transfer reaction was studied by using the redox probes [Fe(CN)(6)](3-)/(4-) [Ru(NH3)(6)](2+/3+). The cyclic voltammetry experiments showed that the peak currents and peak-to-peak potential differences changed after assembling different layers on the electrode surface indicating that the charge of the surface has a significant effect on the kinetics of the studied charge transfer reactions. These reactions were studied in more detail by electrochemical impedance spectroscopy. When [Fe(CN)(6)](3-/-) was used as the redox label, multilayers that terminated with negatively charged PTA showed a high charge transfer resistance but multilayers that terminated with positively charged PAH showed lower charge transfer resistance. With [Ru(NH3)(6)](2+/3+) as the redox label, the charge transfer resistance at multilayers that terminated with positively charged PAH was much higher than at the multilayer terminated by the negatively charged PTA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The report described a method of more stably dispersing oxidized carbon nanotubes (CNTs) by forming complex with polycation and the layer-by-layer self-assembly behavior of the complex with polyanion was studied. The properties of the self-assembled multilayer film containing carbon nanotubes were studied. Cyclic voltammetry, UV-vis-NIR spectroscopy, electrochemical impedance spectroscopy and scanning electron microscopy were used for characterization of film assembly. UV-vis-NIR spectroscopy and cyclic voltammetry study indicated the uniform growth of the film. Electrochemical impedance spectroscopy results showed that incorporating of carbon nanotubes in the polyelectrolyte multilayers; decreased in the electron-transfer resistance R, indicating more favorable electrochemical reaction interface. The electrocatalytic property of the multilayer modified electrode to NADH was investigated mainly with different numbers of the bilayers; and the results showed that along with the increase of the assembled bilayers the overpotential of NADH oxidation decreased. The detection lit-nit Could reach 6 mu M at a detection potential of 0.4 V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the charge transfer across the micro-liquid/liquid interface supported at the orifice of a double-barrel micropipette, namely, a theta-pipette, is reported. Simple ion transfer(TMA(+)), facilitated ion transfer (potassium ion transfer facilitated by DB18C6), and electron transfer (ferrocene and ferri/ferrocyanide system) have been investigated by cyclic voltammetry. The experimental results show that a very thin aqueous film, linking both barrels filled with the aqueous solution and the organic solution respectively, can spontaneously be formed on the outer glass surface of such a double-barrel micropipette to construct a micro-liquid/liquid interface, which provides the asymmetry of diffusion field. Such device is demonstrated experimentally which can be employed as one of the simplest electrochemical cells to investigate the charge transfer across the liquid/liquid interface.