405 resultados para ELECTROCHEMICAL CAPACITORS
Resumo:
A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber-supported supra-high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of ID hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra-high density small "bare" Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber-supported supra-high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.
Resumo:
In this paper, we have reported a very simple strategy (combined sonication with sol-gel techniques) for synthesizing well-defined silica-coated carbon nanotube (CNT) coaxial nanocable without prior CNT functionalization. After functionalization with NH2 group, the CNT/silica coaxial nanocable has been employed as a three-dimensional support for loading ultra-high-density metal or hybrid nanoparticles (NPs) such as gold NPs, Au/Pt hybrid NPs, Pt hollow NPs, and Au/Ag core/shell NPs. Most importantly, it is found that the ultra-high-density Au/Pt NPs supported on coaxial nanocables (UASCN) could be used as enhanced materials for constructing electrochemical devices with high performance. Four model probe molecules (O-2, CH3OH, H2O2, and NH2NH2) have been investigated on UASCN-modified glassy carbon electrode (GCE). It was observed that the present UASCN exhibited high electrocatalytic activity toward diverse molecules and was a promising electrocatalyst for constructing electrochemical devices with high performance. For instance, the detection limit for H2O2 with a signal-to-noise ratio of 3 was found to be 0.3 mu M, which was lower than certain enzyme-based biosensors.
Resumo:
Triplex helical formation has been the focus of considerable interest because of possible applications in developing new molecular biology tools as well as therapeutic agents and the possible relevance of H-DNA structures in biology system. We report here that a small-molecule anticancer agent, coralyne, has binding preference to the less stable protonated triplex d(C+-T)(6):d(A-G)(6).d(C-T)(6) over duplex d(A-G)(6).d(C-T)(6) and shows different spectral and electrochemical characteristics when binding to triplex and duplex DNA, indicating that electrochemical technique can detect the less stable protonated triplex formation.
Resumo:
For a sphere electrode enclosed in finite-volume electrolyte, the measured current will deviate from the result predicted by the semi-infinite diffusion theory after some time. By random-walk simulation, we compared this time to the one needed for diffusion layer to reach electrolyte boundary, and revealed a clear signal delay of electrochemical current. Further we presented a quantitative description of this delay time. The simulation results suggested that the semi-infinite diffusion theory can even be applied when the theoretical diffusion layer grows to 1.28 electrolyte thicknesses, with an accuracy better than 0.5%. We attributed this time delay to the molecules' finite propagation velocity. Finally, we discussed how this delay can influence and facilitate the following electrochemical detection towards the nanometer and single-cell scale.
Resumo:
Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA.
Resumo:
We report for the first time a simple low-cost electrochemical route to synthesis of diameter-controlled hierarchical flowerlike gold microstructures with "clean'' surfaces using gold nanoplates or nanopricks as building blocks without introducing any template or surfactant.
Resumo:
Bioactive ultrathin films with the incorporation of amino-terminated G4 PAMAM dendrimers have been prepared via layer-by-layer self-assembly methods on a gold electrode and used for the DNA hybridization analysis. Surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) are used to characterize the successful construction of the multicomponent film on the gold substrate. The dendrimer-modified surfaces improve the immobilization capacity of the probe DNA greatly, compared to the AET (2aminoethanethiol) SAM sensor surfaces without dendrimer molecules. DNA hybridization analysis is monitored by EIS. The dendrimer-based electrochemical impedance DNA biosensor shows high sensitivity and selectivity for DNA hybridization assay. The multicomponent films also display a high stability during repeated regeneration and hybridization cycles.
Resumo:
This review covers recent advances in synthesis and electrochemical applications of gold nanoparticles (AuNPs). Described approaches include the synthesis of AuNPs via designing and choosing new protecting ligands; and applications in electrochemistry of AuNPs including AuNPs-based bioelectrochemical sensors, such as direct electrochemistry of redox-proteins, genosensors and immunosensors, and AuNPs as enhancing platform for electrocatalysis and electrochemical sensors.