93 resultados para Dwarf Galaxy Fornax Distribution Function Action Based
Resumo:
Based on the second-order solutions obtained for the three-dimensional weakly nonlinear random waves propagating over a steady uniform current in finite water depth, the joint statistical distribution of the velocity and acceleration of the fluid particle in the current direction is derived using the characteristic function expansion method. From the joint distribution and the Morison equation, the theoretical distributions of drag forces, inertia forces and total random forces caused by waves propagating over a steady uniform current are determined. The distribution of inertia forces is Gaussian as that derived using the linear wave model, whereas the distributions of drag forces and total random forces deviate slightly from those derived utilizing the linear wave model. The distributions presented can be determined by the wave number spectrum of ocean waves, current speed and the second order wave-wave and wave-current interactions. As an illustrative example, for fully developed deep ocean waves, the parameters appeared in the distributions near still water level are calculated for various wind speeds and current speeds by using Donelan-Pierson-Banner spectrum and the effects of the current and the nonlinearity of ocean waves on the distribution are studied. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The unique geologic, geomorphic and climatic conditions of southeast Tibet have made the region to develop the multi-style and frequently occurring geologic hazards, especially the collapses and landslides and debris flows along the section of Ranwu-Lulang in Sichuan-Tibet highway. However, most of those geologic hazards have close relationship with the loose accumulations. That is, the loose accumulations are the main carrier of most geologic hazards. Thereof, the huge-thick accumulations along the highway is regarded as the objective in the thesis to study the geologic background, hazarding model and mitigation methods comprehensively, based on the multi-disciplinary theories and former materials. First of all, in the paper, based on field engineering geologic investigations, the genetic type and the characteristics of spatiotemporal distribution of the huge-thick loose accumulations along the highway, have been analysized from the factors of regional geology and geomorphy and climate, as well as the coupling acting of those factors with inoculation and eruption of the loose accumulations geologic hazards. The huge-thick loose accumulations has complex genetic types and specific regulations of spatiotemporal distribution, closely controlled by the outer environment of the region. The accumulations are composed of earth and boulder, with disorder structure and poor sorting, specific forming environments and depositing conditions. And its physical and mechanic properties are greatly distinguished from rock and common earth inland. When Sichuan-Tibet highway was firstly constructed along the north bank of Purlung Tsangpo River, the huge-thick loose accumulations was cut into many high and steep slopes. Through the survey to the cut-slopes and systematic investigation to their failures, the combination of height and angle of the accumulations slope has been obtained. At the same time, the types of genetic structure of those cut-slopes are also analysized and concluded, as well as their failure models. It is studied in the paper that there are piaster, duality, multielement and complexity types in genetic structure, and rip-dump-repose, rip-shear-slip and weathering-flake types in failure models. Moreover, it is briefly introduced present engineering performance methods and techniques dealing with the deformation and failure of the accumulations cut-slope. It is also suggested that several new techniques of slope enforcement and the method of landslide and rockfall avoiding should be applied. The research of high and steep cut-slope along the highway has broadened the acknowledgement of the combination of cut-slope height and angle. Especially, the dissertation also has made the monographic studies about the geologic background and hazarding models and prevention methods of some classic but difficult accumulations geologic hazards. They are: (1) Research of the engineering geologic background of the 102 landslide group and key problems about the project of tunnel. The 102 landslide group is a famous accumulational one composed of glacial tills and glaciofuvial deposit. The tunnel project is a feasible and optional one which can solve the present plight of “sliding after just harnessing” in the 102 section. Based on the glacial geomorphy and its depositing character, distribution of seepage line, a few drillhole materials and some surveying data, the position of contact surface between gneiss and accumulations has been recognized, and the retreating velocities of three different time scales (short, medium and long term) have been approximately calculated, and the weathering thickness of gneiss has also been estimated in the paper. On the basis of above acknowledgement, new engineering geomechnic mode is established. Numerical analysis about the stability of the No.2 landslide is done by way of FLAC program, which supplies the conclusion that the landslide there develops periodically. Thereof, 4 projects of tunnel going through the landslide have been put forwards. Safety distance of the tunnel from clinohefron has been numerically analysized. (2) Research of the geologic setting and disaster model and hazard mitigation of sliding-sand-slope. From the geologic setting of talus cone, it is indicated that the sliding-sand-slope is the process of the re-transportation and re-deposit of sand under the gravity action and from the talus cone. It is the failure of the talus cone essentially. The layering structure of the sliding-sand-slope is discovered. The models of movement and failure of the sliding-sand-slope has been put forwards. The technique, “abamurus+grass-bush fence+degradable culture pan”, is suggested to enforcement and green the sliding-sand-slope. (3) Characteristics and hazarding model and disaster mitigation of debris flow. The sources of solid material of three oversize debris flows have been analysized. It is found that a large amount of moraine existing in the glacial valley and large landslide dam-break are the two important features for oversize debris flow to be taken place. The disaster models of oversize and common debris flows have been generalized respectively. The former model better interpret the event of the Yigong super-large landslide-dam breaking. The features of common debris flow along the highway section, scouring and silting and burying and impacting, are formulated carefully. It is suggested that check dam is a better engineering structure to prevent valley from steeply scouring by debris flow. Moreover, the function of check dam in enforcing the slope is numerically calculated by FLAC program. (4) Songzong ancient ice-dammed lake and its slope stability. The lacustrine profile in Songzong landslide, more than 88 meters thick, is carefully described and measured. The Optical Simulated Luminescence (OSL) ages in the bottom and top of the silty clay layer are 22.5±3.3 kaB.P., 16.1±1.7 kaB.P., respectively. It is indicated by the ages that the lacustrine deposits formed during the Last Glacial Maximum ranging from 25ka B.P. to 15ka B.P. The special characteristics of the lacustrine sediment and the ancient lake line in Songzong basin indicated that the lacustrine sediment is related to the blocking of the Purlung Tsangpo River by the glacier in Last Glacial Maximum from Dongqu valley. The characteristics of the lacustrine profile also indicate that the Songzong ice-dammed lake might run through the Last Glacial Maximum. Two dimensional numerical modeling and analysis are done to simulate the slope stability under the conditions of nature and earthquake by FLAC program. The factor of safety of the lacusrtine slope is 1.04, but it will take place horizontal flow under earthquake activity due to the liquefaction of the 18.33 m silt layer. The realign to prevent the road from landslide is suggested.
Resumo:
The biothermocatalytic transitional zone gas is a new type of natural gas genetic theory, and also an clean, effective and high quality energy with shallow burial depth, wide distribution and few investment. Meanwhile, this puts biothermocatalytic transitional zone gas in important position to the energy resource and it is a challenging front study project. This paper introduces the concept, the present situation of study and developmental trend about biothermocatalytic transitional zone gas in detail. Then by using heat simulating of source rocks and catalysis mechanism analysis in the laboratory and studying structural evolution, sedimentation, diagenesis and the conditions of accumulation formation and so on, this paper also discusses catalytic mechanism and evolutionary model of the biothermocatalytic transitional zone gas formation, and establishes the methods of appraisal parameter and resources prediction about the biothermocatalytic transitional zone gas. At last, it shows that geochemical characteristics and differentiated mark of the biothermocatalytic transitional zone gas, and perfect natural gas genetic theory, and points out the conditions of accumulation formation, distribution characteristics and potential distribution region on the biothermocatalytic transitional zone gas m China. The paper mainly focuses on the formation mechanism and the resources potential about the biothermocatalytic transitional zone gas. Based on filed work, it is attached importance to a combination of macroscopic and microcosmic analysis, and the firsthand data are obtained to build up framework and model of the study by applying geologic theory. Based on sedimentary structure, it is expounded that structural actions have an effect on filling space and developmental cource of sediments and evolution of source rocks. Carried out sedimentary environment, sequence stratigraphy, sedimentary system and diagenesis and so on, it is concluded that diagenesis influences developmental evolution of source rocks, and basic geologic conditions of the biothermocatalytic transitional zone gas. Applying experiment simulating and catalytic simulating as well as chemical analysis, catalytic mechanism of clay minerals is discussed. Combined diagenecic dynamics with isotope fractionation dynamics, it is established that basis and method of resource appraisal about the biothermocatalytic transitional zone gas. All these results effectively assess and predict oil&gas resources about the biothermocatalytic transitional zone gas-bearing typical basin in China. I read more than 170 volumes on the biothermocatalytic transitional zone gas and complete the dissertation' summary with some 2.4 ten thousand words, draw up study contents in some detail and set up feasible experimental method and technologic course. 160 pieces of samples are obtained in oilfield such as Liaohe, Shengli, Dagang and Subei and so on, some 86 natural gas samples and more than 30 crude oil samples. Core profiles about 12 wells were observed and some 300 geologic photos were taken. Six papers were published in the center academic journal at home and abroad. Collected samples were analysised more than 1000 times, at last I complete this dissertation with more than 8 ten thousand words, and with 40 figures and 4 plates. According to these studies, it is concluded the following results and understandings. 1. The study indicates structural evolution and action of sedimentary basin influence and control the formation and accumulation the biothermocatalytic transitional zone gas. Then, the structural action can not only control accommodation space of sediments and the origin, migration and accumulation of hydrocarbon matters, but also can supply the origin of energy for hygrocarbon matters foramtion. 2. Sedimentary environments of the biothermocatalytic transitional zone gas are lake, river and swamp delta- alluvial fan sedimentary systems, having a warm, hot and humid climate. Fluctuation of lake level is from low to high., frequency, and piling rate of sedimentary center is high, which reflect a stable depression and rapidly filling sedimentary course, then resulting in source rocks with organic matter. 3. The paper perfects the natural gas genetic theory which is compound and continuous. It expounds the biothermocatalytic transitional zone gas is a special gas formation stage in continuous evolutionary sequence of organic matter, whose exogenic force is temperture and catalysis of clay minerals, at the same time, having decarbxylation, deamination and so on. 4. The methodology is established which is a combination of SEM, TEM and Engery spectrum analysis to identify microstructure of crystal morphology about clay minerals. Using differential thermal-chromatographic analysis, it can understand that hydrocarbon formation potential of different typies kerogens and catalytic method of all kinds of mineral matrix, and improve the surface acidity technology of clay minerals measured by the pyridine analytic method. 5. The experiments confirm catalysis of clay minerals to organic matter hygrocarbon formation. At low temperature (<300 ℃), there is mainly catalysis of montmorillonite, which can improve 2-3 times about produced gas of organic matters and the pyrolyzed temperature decreased 50 ℃; while at the high temperature, there is mainly catalysis of illite which can improve more than 2 times about produced gas of organic matters. 6. It is established the function relationship between organic matter (reactant) concentration and temperature, pressure, time, water and so on, that is C=f (D, t). Using Rali isotope fractionation effect to get methane isotope fractionation formula. According to the relationship between isotope fractionation of diagenesis and depth, and combined with sedimentary rate of the region, it is estimated that relict gas of the biothermocatalytic transitional zone gas in the representative basin. 7. It is revealed that hydrocarbon formation mechanism of the biothermocatalytic transitional zone gas is mainly from montmorillonite to mixed minerals during diagenesis. In interlayer, a lot of Al~(3+) substitute for Si~(4+), resulting in a imbalance between surface charge and interlayer charge of clay minerals and the occurrence of the Lewis and Bronsted acid sites, which promote to form the carbon cation. The cation can form alkene or small carbon cation. 8. It is addressed the comprehensive identification mark of the biothermo - catalytic transitional zone gas. In the temproal-spatial' distribution, its source rocks is mainly Palaeogene, secondly Cretaceous and Jurassic of Mesozoic, Triassic, having mudy rocks and coal-rich, their organic carbon being 0.2% and 0.4% respectively. The vitrinite reflection factor in source rocks Ro is 0.3-0.65%, a few up to 0.2%. The burial depth is 1000-3000m, being characterized by emerge of itself, reservoir of itself, shallow burial depth. In the transitional zone, from shallow to deep, contents of montmorillonites are progressively reduced while contents of illites increasing. Under SEM, it is observed that montmorillonites change into illite.s, firstly being mixed illite/ montmorillonite with burr-like, then itlite with silk-like. Carbon isotope of methane in the biothermocatatytic transitional zone gas , namely δ~(13)C_1-45‰- -60 ‰. 9. From the evolutionary sequence of time, distribution of the biothermocatalytic transitional zone gas is mainly oil&gas bearing basin in the Mesozoic-Neozoic Era. From the distribution region, it is mainly eastern stuctural active region and three large depressions in Bohaiwang basin. But most of them are located in evolutionary stage of the transitional zone, having the better relationship between produced, reservoir and seal layers, which is favorable about forming the biothermocatalytic transitional zone gas reservoir, and finding large gas (oil) field.