105 resultados para Discretization Algorithm
Resumo:
Chinese Acad Sci, ISCAS Lab Internet Software Technologies
Resumo:
Collision detection is an important component in simulation applications which are based on virtual geographic information system (VGIS). In this paper, an effective collision detection algorithm for multiple objects in VGIS, VGIS-COLLIDE, is presented. The algorithm firstly integrates existing quadtree, which is the global hierarchical structure of VGIS, with axis-aligned bounding box of object to perform the broad-phase of collision detection. After that, exact collision detection between two objects which have passed the broad-phase of collision detection is performed. The algorithm makes no assumption about input primitives or object's motion and is directly applicable to all triangulated models. It can be applicable to both rigid and deformable objects without preprocessing. The performance of the algorithm has been demonstrated in several environments consisting of a high number of objects with hundreds of thousands of triangles.
Resumo:
The present study reports an application of the searching combination moving window partial least squares (SCMWPLS) algorithm to the determination of ethenzamide and acetoaminophen in quaternary powdered samples by near infrared (NIR) spectroscopy. Another purpose of the study was to examine the instrumentation effects of spectral resolution and signal-to-noise ratio of the Buchi NIRLab N-200 FT-NIR spectrometer equipped with an InGaAs detector. The informative spectral intervals of NIR spectra of a series of quaternary powdered mixture samples were first located for ethenzamide and acetoaminophen by use of moving window partial least squares regression (MWPLSR). Then, these located spectral intervals were further optimised by SCMWPLS for subsequent partial least squares (PLS) model development. The improved results are attributed to both the less complex PLS models and to higher accuracy of predicted concentrations of ethenzamide and acetoaminophen in the optimised informative spectral intervals that are featured by NIR bands. At the same time, SCMWPLS is also demonstrated as a viable route for wavelength selection.
Resumo:
It is important to detect the aromaticity of structures during the process of structure elucidation and output. In this paper, an alogrithm was proposed to detect the aromaticity of structures by the use of algorithm on ring identification. The results show that it could be used to identify most of the aromatic structure. It have been used as constraints of Expert System on Elucidation Structure of Organic Compounds(ESESOC) and a good result has been achieved.
Resumo:
An algorithm for enumeration of stereoisomers due to asymmetric carbon, C=C double bond and so on has been developed. It consists of three steps. The output of stereoisomers can be represented by 2.5-dimensional connection table.
Resumo:
It is necessary to generate automorphism group of chemical graph in computer-aided structure eluciation. In this paper, an algorithm is developed by all-path topological symmetry algorithm to build automorphism group of chemical graph. A comparison of several topological symmetry algorithm reveals that all-path algorthm can yield correct of class of chemical graph. It lays a foundation for ESESOC system for computer-aided structure elucidation.
Resumo:
It's important to identify ring in the process of structure elucidation. In this paper, all rings and the smallest set of smallest ring(SSSR) of structure are obtained from two-dimensional connection table. The results are satisfactory by using this algorithm in ESESOC expert system as constraint.
Resumo:
During the development of our ESESOC system (Expert System for the Elucidation of the Structures of Organic Compounds), computer perception of topological symmetry is essential in searching for the canonical description of a molecular structure, removing the irredundant connections in the structure generation process, and specifying the number of peaks in C-13- and H-1-NMR spectra in the structure evaluation process. In the present paper, a new path identifier is introduced and an algorithm for detection of topological symmetry from a connection table is developed by the all-paths method. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
For the exhaustive and irredundant generation of candidate structures in ESESOC (Expert System for the Elucidation of the Structures of Organic Compounds), a new algorithm for computer perception of topological equivalence classes of the nodes (non-hydrog
Resumo:
Ocean wind speed and wind direction are estimated simultaneously using the normalized radar cross sections or' corresponding to two neighboring (25-km) blocks, within a given synthetic aperture radar (SAR) image, having slightly different incidence angles. This method is motivated by the methodology used for scatterometer data. The wind direction ambiguity is removed by using the direction closest to that given by a buoy or some other source of information. We demonstrate this method with 11 EN-VISAT Advanced SAR sensor images of the Gulf of Mexico and coastal waters of the North Atlantic. Estimated wind vectors are compared with wind measurements from buoys and scatterometer data. We show that this method can surpass other methods in some cases, even those with insufficient visible wind-induced streaks in the SAR images, to extract wind vectors.
Resumo:
The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.
Resumo:
In this paper, a new scheduling algorithm for the flexible manufacturing cell is presented, which is a discrete time control method with fixed length control period combining with event interruption. At the flow control level we determine simultaneously the production mix and the proportion of parts to be processed through each route. The simulation results for a hypothetical manufacturing cell are presented.
Resumo:
This dissertation presents a series of irregular-grid based numerical technique for modeling seismic wave propagation in heterogeneous media. The study involves the generation of the irregular numerical mesh corresponding to the irregular grid scheme, the discretized version of motion equations under the unstructured mesh, and irregular-grid absorbing boundary conditions. The resulting numerical technique has been used in generating the synthetic data sets on the realistic complex geologic models that can examine the migration schemes. The motion equation discretization and modeling are based on Grid Method. The key idea is to use the integral equilibrium principle to replace the operator at each grid in Finite Difference scheme and variational formulation in Finite Element Method. The irregular grids of complex geologic model is generated by the Paving Method, which allow varying grid spacing according to meshing constraints. The grids have great quality at domain boundaries and contain equal quantities of nodes at interfaces, which avoids the interpolation of parameters and variables. The irregular grid absorbing boundary conditions is developed by extending the Perfectly Matched Layer method to the rotated local coordinates. The splitted PML equations of the first-order system is derived by using integral equilibrium principle. The proposed scheme can build PML boundary of arbitrary geometry in the computational domain, avoiding the special treatment at corners in a standard PML method and saving considerable memory and computation cost. The numerical implementation demonstrates the desired qualities of irregular grid based modeling technique. In particular, (1) smaller memory requirements and computational time are needed by changing the grid spacing according to local velocity; (2) Arbitrary surfaces and interface topographies are described accurately, thus removing the artificial reflection resulting from the stair approximation of the curved or dipping interfaces; (3) computational domain is significantly reduced by flexibly building the curved artificial boundaries using the irregular-grid absorbing boundary conditions. The proposed irregular grid approach is apply to reverse time migration as the extrapolation algorithm. It can discretize the smoothed velocity model by irregular grid of variable scale, which contributes to reduce the computation cost. The topography. It can also handle data set of arbitrary topography and no field correction is needed.