96 resultados para Dimensión fractal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of regional crustal stability of active tectonic region basically includes analysis of recent activity of Earth's crust, single factor assessment, study of complexity, and comprehensive assessment of crust stability. In this thesis, some work are made as follows: · Based on abundant data from gravity field, aeromagnetic survey, magnetism, magnetotelluric deep sounding, remote sensing and geotectonic as well as earthquakes observed in recent years around this region and adjacent zones, we can get a through understanding about the structural features and activity of the earth's crust in Chuan-Dian region. The results from explosion earthquake and telluric electromagnetic sounding are consistent with the structural features of the crust manifested by the geophysical field. The data of deep geologic structures are important for us to work out a vivid three-dimensional model of the earth's crustal structure of the Jinsha River region. According to a synthesis, the author of this thesis proposes some indicators for dividing the faulted blocks. It can also be inferred that the movement of the Chuan-Dian faulted block, which is the relatively active part of southwestern China, is controlled by the boundary faults, and the intensive activity and deformation are concentrated along the boundaries of the block. · Mainly discussing respectively the mechanism and laws of active faults, earthquakes, and geological hazards activity, and their influences on the stability and security of engineering, also trying to probe into the way to assess the risk of single factor in this section. Especially with the method of fractal geometry, the thesis has discussed how to study the complexity of each factor. These geologic hazards which are distributed at the uppermost part of the crust in this region form a typical mountainous set of the active tectonic areas. The results of survey show that some slopes are liable- to -sliding with a weak layer of low shear strength. Occurrences of landslides are to a great extent related to local geological structures, in particular active faults. This is why numerous landslides have occurred simultaneously around the epicenter of a strong earthquake or the center of a strong rainfall, which are related to active faults. · The analysis of the crustal stability is based on a regional grid division, and a fuzzy comprehensive analysis method is used to determine the grade of the quality in each grid. The evaluation factors and their weights are taken from the results of the hierarchical analysis. The evaluation indexes consist of qualitative and quantitative ones. The qualitative ones can be quantified through the experts weighing system, while the quantitative ones can be obtained from statistical analysis. For quality grades, four levels are used: stable, essentially stable, sub-stable, and unstable. The results of the evaluation on Jinshajiang region demonstrate that the crustal stability become distinctly worse in the areas controlled by active deep faults. Therefore, detailed investigations on the active faulting and geologic hazards, include earthquake activity are especially necessary for those areas adjacent to the deep fault belts. On the bases of the data available and the survey results, we have made a preliminary assessment for the construction conditions and adaptability of every planned site in the middle or lower reaches of Jinsha River. Finally, the thesis prospected the vista of the study of crustal stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Facing the problems met in studies on predominant hydrocarbon migration pathways, experiments and numerical simulating were done in this thesis work to discuss the migration mechanisms. The aim is to analyze quantitatively the pathway pattern in basin scale and to estimate the hydrocarbon loss on the pathway that offer useful information for confirming the potential hydrocarbon accumulation. Based on our understandings on hydrocarbon migration and the fluid dynamic theory, a series of migration experiments were designed to observe the phenomena where kerosene is used as draining phase driven only by buoyancy force that expulses pore water. These experiments allow to study the formation of migration pathways, the distribution of non-wetting oil along these pathways, and the re-utilizing of previously existing pathways marked by residual traces etc. The types of pattern for migration pathways may be characterized by a phase diagram using two dimensionless numbers: the capillary number and the Bond number. The NMR technique is used to measure the average saturation of residual oil within the pathways. Based our experiment works and percolation concept, a numerical simulation model were proposed and realized. This model is therefore called as BP (Buoyancy Percolation) simulator, since buoyancy is taken as the main driving force in hydrocarbon migration. To make sure that BP model is applicable to simulate the process of oil secondary migration, the experimental phenomena are compared with those simulated with BP model by fractal method, and the result is positive. After then, we use BP simulator to simulate the process of migration of oil in the porous media saturated with water at different scale. And the results seem similar to those cited in literatures. In addition, our software is applied in Paris basin to predict the pathway of hydrocarbon migration happened in the Middle Jurassic reservoirs. It is found that the results obtained with our BP model are generally agree with Hindle (1997) and Bekeles'(1999), but our simulated migration pathway pattern and migration direction seem more reasonable than theirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seepage control in karstic rock masses is one of the most important problems in domestic hydroelectric engineering and mining engineering as well as traffic engineering. At present permeability assessment and leakage analysis of multi-layer karstic rock masses are mainly qualitative, while seldom quantitative. Quantitative analyses of the permeability coefficient and seepage amount are conducted in this report, which will provide a theoretical basis for the study of seepage law and seepage control treatment of karstic rocks. Based on the field measurements in the horizontal grouting galleries of seepage control curtains on the left bank of the Shuibuya Hydropower Project on the Qingjiang river, a hydraulic model is established in this report, and the computation results will provide a scientific basis for optimization of grouting curtain engineering. Following issues are addressed in the report. (1) Based on the in-situ measurements of fissures and karstic cavities in grouting galleries, the characteristics of karstic rock mass is analyzed, and a stochastic structural model of karstic rock masses is set up, which will provide the basis for calculation of the permeability and leakage amount of karstic rock mass. (2) According to the distribution of the measured joints in the grouting galleries and the stochastic results obtained from the stochastic structural model of karstic rock mass between grouting galleries, a formula for computation of permeability tensor of fracturing system is set up, and a computation program is made with Visual Basic language. The computation results will be helpful for zoning of fissured rock masses and calculation of seepage amount as well as optimization of seepage control curtains. (3) Fractal theory is used to describe quantitatively the roughness of conduit walls of karstic systems and the sinuosity of karstic conduits. It is proposed that the roughness coefficient of kastic caves can be expressed by both fractal dimension Ds and Dr that represent respectively the extension sinuosity of karstic caves and the roughness of the conduit walls. The existing formula for calculating the seepage amount of karstic conduits is revised and programmed. The seepage amount of rock masses in the measured grouting galleries is estimated under the condition that no seepage control measures are taken before reservoir impoundment, and the results will be helpful for design and construction optimization of seepage curtains of the Shuibuya hydropower project. This report is one part of the subject "Karstic hydrogeology and the structural model and seepage hydraulics of karstic rock masses", a sub-program of "Study on seepage hydraulics of multi-layer karstic rock masses and its application in seepage control curtain engineering", which is financially supported by the Hubei Provincial key science and technology programme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guided by geological theories, the author analyzed factual informations and applied advanced technologies including logging reinterpretation, predicting of fractal-based fracture network system and stochastic modeling to the low permeable sandstone reservoirs in Shengli oilfield. A new technology suitable for precious geological research and 3D heterogeneity modeling was formed through studies of strata precious correlation, relation between tectonic evolution and fractural distribution, the control and modification of reservoirs diagenesis, logging interpretation mathematical model, reservoir heterogeneity, and so on. The main research achievements are as follows: (1) Proposed four categories of low permeable reservoirs, which were preferable, general, unusual and super low permeable reservoir, respectively; (2) Discussed ten geological features of the low permeable reservoirs in Shengli area; (3) Classified turbidite fan of Es_3 member of the Area 3 in Bonan oilfield into nine types of lithological facies, and established the facies sequences and patterns; (4) Recognized that the main diagenesis were compaction, cementation and dissolution, among which the percent compaction was up to 50%~90%; (5) Divided the pore space in ES_3 member reservoir into secondary pores with dissolved carbonate cement and residual intergranular pores strongly compacted and cemented; (6) Established logging interpretation mathematical model guided by facies- control modeling theory; (7) Predicted the fracture distribution in barriers using fractal method; (8) Constructed reservoir structural model by deterministic method and the 3D model of reservoir parameters by stochastic method; (9) Applied permeability magnitudes and directions to describe the fractures' effect on fluid flow, and presented four different fractural configurations and their influence on permeability; (10) Developed 3D modeling technology for the low permeable sandstone reservoirs. The research provided reliable geological foundation for the establishment and modification of development plans in low permeable sandstone reservoirs, improved the development effect and produced more reserves, which provided technical support for the stable and sustained development of Shengli Oilfield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The grid is a foundation of reservoir description and reservoir simulation. The scale of grid size is vital influence for the precision of reservoir simulation the gridding of reservoir parameters require reasonable interpolation method with computing quickly and accurately. The improved distant weighted interpolation method has many properties, such as logical data points selection, exact interpolation, less calculation and simply programming, and its application can improve the precision of reservoir description and reservoir simulation. The Fractal geologic statistics describes scientifically the distribution law of various geological properties in reservoir. The Fractal interpolation method is applied in grid interpolation of reservoir parameters, and the result more accorded with the geological property and configuration of reservoir, and improved the rationality and quality of interpolation calculation. Incorporating the improved distant weighted interpolation method with Fractal interpolation method during mathematical model of grid-upscaling and grid-downscaling, the softwares of GROUGH(grid-upscaling) and GFINE (grid-downscaling) were developed aiming at the questions of grid-upscaling and grid-downscaling in reservoir description and reservoir simulation. The softwares of GROUGH and GFINE initial applied in the research of fined and large-scale reservoir simulation. It obtained fined distribution of remaining oil applying grid-upscaling and grid-downscaling technique in fined reservoir simulation of Es21-2 Shengtuo oilfield, and provided strongly and scientific basis for integral and comprehensive adjustment. It's a giant tertiary oil recovery pilot area in the alkaline/surfactant/polymer flooding pilot area of west district of Gudao oilfield, and first realized fined reservoir simulation of chemical flooding using grid-upscaling and grid-downscaling technique. It has wide applied foreground and significant research value aiming at the technique of grid-upscaling and grid-downscaling in reservoir description and reservoir simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saprolite is the residual soil resulted from completely weathered or highly weathered granite and with corestones of parent rock. It is widely distributed in Hong Kong. Slope instability usually happens in this layer of residual soil and thus it is very important to study the engineering geological properties of Saprolite. Due to the relic granitic texture, the deformation and strength characteristics of Saprolite are very different from normal residual soils. In order to investigate the effects of the special microstructure on soil deformation and strength, a series of physical, chemical and mechanical tests were conducted on Saprolite at Kowloon, Hong Kong. The tests include chemical analysis, particle size analysis, mineral composition analysis, mercury injection, consolidation test, direct shear test, triaxial shear test, optical analysis, SEM & TEM analysis, and triaxial shear tests under real-time CT monitoring.Based on the testing results, intensity and degree of weathering were classified, factors affecting and controlling the deformation and strength of Saprolite were identified, and the interaction between those factors were analyzed.The major parameters describing soil microstructure were introduced mainly based on optical thin section analysis results. These parameters are of importance and physical meaning to describe particle shape, particle size distribution (PSD), and for numerical modeling of soil microstructure. A few parameters to depict particle geometry were proposed or improved. These parameters can be used to regenerate the particle shape and its distribution. Fractal dimension of particle shape was proposed to describe irregularity of particle shapes and capacity of space filling quantitatively. And the effect of fractal dimension of particle shape on soil strength was analyzed. At the same time, structural coefficient - a combined parameter which can quantify the overall microstructure of rock or soil was introduced to study Saprolite and the results are very positive. The study emphasized on the fractal characteristics of PSD and pore structure by applying fractal theory and method. With the results from thin section analysis and mercury injection, it was shown that at least two fractal dimensions Dfl(DB) and Df2 (Dw), exist for both PSD and pore structure. The reasons and physical meanings behind multi-fractal dimensions were analyzed. The fractal dimensions were used to calculate the formation depth and weathering rate of granite at Kowloon. As practical applications, correlations and mathematical models for fractal dimensions and engineering properties of soil were established. The correlation between fractal dimensions and mechanical properties of soil shows that the internal friction angle is mainly governed by Dfl 9 corresponding to coarse grain components, while the cohesion depends on Df2 , corresponding to fine grain components. The correlations between the fractal dimension, friction angle and cohesion are positive linear.Fractal models of PSD and pore size distribution were derived theoretically. Fragmentation mechanism of grains was also analyzed from the viewpoint of fractal. A simple function was derived to define the theoretical relationship between the water characteristic curve (WCC) and fractal dimension, based on a number of classical WCC models. This relationship provides a new analytical tool and research method for hydraulic properties in porous media and solute transportation. It also endues fractal dimensions with new physical meanings and facilitates applications of fractal dimensions in water retention characteristics, ground water movement, and environmental engineering.Based on the conclusions from the fractal characteristics of Saprolite, size effect on strength was expressed by fractal dimension. This function is in complete agreement with classical Weibull model and a simple function was derived to represent the relationship between them.In this thesis, the phenomenon of multi-fractal dimensions was theoretically analyzed and verified with WCC and saprolite PSD results, it was then concluded that multi-fractal can describe the characteristics of one object more accurately, compared to single fractal dimension. The multi-fractal of saprolite reflects its structural heterogeneity and changeable stress environment during the evolution history.