122 resultados para D. Transmission electron microscopy (TEM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)(2), Eu(NO3)(3) and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ D-5(0)-F-7(J) (J = 1-4) transitions, with the magnetic dipole D-5(0)-F-7(1) allowed transition (590 nm) being the most prominent emission line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxdiazole (PBD) is a good electron-transporting material and can form single crystals from solution. In this work, solution cast PBD single crystals with different crystallographic axes (b, c) perpendicular to the Au/S substrates in large area are achieved by controlling the rate of solvent evaporation in the presence and absence of external electrostatic field, respectively. The orientation of these single crystals on Au/S substrate was characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Conducting probe atomic force microscopy (CP-AFM) was used to measure the charge transport characteristics of PBD single crystals grown on Au/S substrates. Transport was measured perpendicular to the substrate between the CP-AFM tip and the Au/S substrate. The electron mobility of 3 x 10(-3) cm(2)/(V s) for PBD single crystal along crystallographic b-axis is determined. And the electron mobility of PBD single crystal along the c-axis is about 2 orders of magnitude higher than that along the b-axis due to the anisotropic charge transport at the low voltage region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter, P-cyclodextrin (P-CD) was employed as stabilizer in the synthesis of gold nanoparticles. Gold nanoparticles were synthesized by the reduction of HAuCl4 by NaBH4 in the presence of P-CD. Varying the ratio of P-Cl) to HAuCl4, isolated gold nanoparticles could be assembled into nanowires. The nanoparticles and nanowires were characterized by transmission electron microscopy, UV/visible spectroscopy, infrared spectroscopy and X-ray photoelectron spectroscopy. The decreased relative intensity of skeletal and ring vibration in FT-IR spectra and the negative shift of the Au4f(7/2) binding energy in XPS spectra confirmed that beta-CD was chemisorped on An nanoparticles via hydroxyl group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles were prepared by the polyol method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV-vis absorption spectra, photoluminescence (PL) spectra, and lifetimes. The results of XRD indicate that the obtained CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles crystallized well at 200 degrees C in diethylene glycol (DEG) with a hexagonal structure. The TEM images illustrate that the CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 7 nm. The growth of the LaF3 shell around the CeF3:Tb3+ core nanoparticles resulted in an increase of the average size (11 nm) of the nanopaticles as well as in a broadening of their size distribution. These nanocrystals can be well-dispersed in ethanol to form clear colloidal solutions. The colloidal solutions of CeF3 and CeF3:Tb3+ show the characteristic emission of Ce3+ 5d-4f (320 nm) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 542 nm as the strongest one) transitions, respectively. The emission intensity and lifetime of the CeF3:Tb3+/LaF3 (core/shell) nanoparticles increased with respect to those of CeF3:Tb3+ core particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many efforts have been made in fabricating three-dimensional (3D) ordered zinc oxide (ZnO) nanostructures due to their growing applications in separations, sensors, catalysis, bioscience, and photonics. Here, we developed a new synthetic route to 3D ZnO-based hollow microspheres by a facile solution-based method through a water-soluble biopolymer (sodium alginate) assisted assembly from ZnO nanorods. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray photoelectron spectroscopy. Raman and photoluminescence spectra of the ZnO-based hollow microspheres were obtained at room temperature to investigate their optical properties. The hollow microspheres exhibit exciting emission features with a wide band covering nearly all the visible region. The calculated CIE (Commission Internationale d'Eclairage) coordinates are 0.24 and 0.31, which fall at the edge of the white region (the 1931 CIE diagram). A possible growth mechanism of the 3D ZnO superstructures based on typical biopolymer-crystal interactions in aqueous solution is tentatively proposed, which might be really interesting because of the participation of the biopolymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline CaWO4 and Eu3+ (Tb3+)-doped CaWO4 phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the Pechini sol-gel method, resulting in the formation of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3+, core-shell structured particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT-IR indicate that CaWO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the FESEM and TEM images. The PL and CL demonstrate that the SiO2@CaWO4 sample exhibits blue emission band WO42- with a maximum at 420 nm (lifetime = 12.8 mu s) originated from the 4 groups, while SiO2@CaWO4:Eu3+ and SiO2@CaWO4:Tb3+ show additional red emission dominated by 614 nm (Eu3+:D-5(0)-F-7(2) transition, lifetime = 1.04 ms) and green emission at 544 nm (Tb3+:D-5(4)-F-7(5) transition, lifetime = 1.38 ms), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline CaTiO3:Pr3+ phosphor layers were coated on nonaggregated, monodisperse, and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2-CaTiO3:Pr3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2-CaTiO3:Pr3+ phosphor particles. The obtained core-shell structured phosphors consist of well dispersed submicron spherical particles with a narrow size distribution. The thickness of the CaTiO3:Pr3+ shell could be easily controlled by changing the number of deposition cycles (about 70 nm for four deposition cycles). The core-shell SiO2-CaTiO3:Pr3+ particles show a strong red emission corresponding to D-1(2)-H-3(4) (612 nm) of Pr3+ under the excitation of ultraviolet (326 nm) and low voltage electron beams (1-5 kV). These particles may be used in field emission displays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monodisperse, core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles were prepared by the sol-gel method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL) and low-voltage cathodoluntinescence (CL). PL and CL study revealed that the core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles show strong red emission dominated by the D-5(0)-F-7(2) transition of Eu3+ at 615 nm with a lifetime of 0.89 ins. The PL and CL emission intensity can be tuned by the coating number of Gd-2(WO4)(3):Eu3+ phosphor layers on SiO2 particles, the size of the SiO2 core particles, and by accelerating voltage and the filament current, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A uniform nanolayer of europium-doped Gd2O3 was coated on the surface of preformed submicron silica spheres by a Pechini sol-gel process. The resulted SiO2@Gd2O3:Eu3+ core-shell structured phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays. The XRD results show that the Gd2O3:Eu3+ layers start to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. The core-shell phosphors possess perfect spherical shape with narrow size distribution (average size: 640 nm) and non-agglomeration. The thickness of the Gd2O3:Eu3+ shells on the SiO2 cores can be adjusted by changing the deposition cycles (70 nm for three deposition cycles). Under short UV excitation, the obtained SiO2@Gd2O3:Eu3+ particles show a strong red emission with D-5(0)-F-7(2) (610 nm) of Eu3+ as the most prominent group.The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SiO2@Gd2MoO6:EU3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy ITEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Gd2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrate that the Gd2MoO6:Eu3+ layers on the SiO2 spheres begin to crystallize after annealing at 600 degrees C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 600 nm), are not agglomerated, and have a smooth surface. The thickness of the Gd2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). The Eu3+ shows a strong PL luminescence (dominated by D-5(0)-F-7(2) red emission at 613 nm) under the excitation of 307 nm UV light.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by D-5(0)-F-7(2) transition of Eu3+ (618 nm, red).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monolayer protected gold nanoparticles (MPCs) are the focus of recent research for their stability and are deemed as the building blocks of bottom-up strategies. In this Letter, 3-mercapto-1,2-propanediol monolayer protected gold nanoparticles (MPD-MPCs) were synthesized and characterized by transmission electron microscopy, UV/Vis spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The value of quantized double-layer capacitance (1.13 aF) of MPD-MPCs in aqueous media was obtained by differential pulse voltammograms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-Mercaptopropionic add monolayer protected gold nanoclusters (MPA-MPCs) were synthesized and characterized by transmission electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The exact value of quantized double-layer capacitance of MPCS in aqueous media was obtained by differential pulse voltammograms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, 4-ferrocene thiophenol was employed as a novel capping agent to synthesize electroactive gold nanoparticles. Transmission electron microscopy showed an average core diameter of 2.5 nm. The optical and electrochemical properties of the 4-ferrocene thiophenol capped gold nanoparticles were characterized by UV-Vis spectroscopy and cyclic voltammograms. Surface plasmon absorbance was detected at 522 nm. Cyclic voltammograms revealed the adsorbed layer reaction controlled electrode process, and the formal potential of electroactive ferrocene centers shifted anodically compared with ferrocene in solution, which could be attributed to the electron-withdrawing phenyl moiety linked to ferrocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we employed triphenylmethanethiol (TPMT) as a novel rigid agent for capping gold nanoparticles and the TPMT monolayer-protected gold nanoparticles were characterized by various analytical techniques. High-resolution transmission electron microscopy showed a narrow dispersed gold core with an average core diameter of ca. 3.6 nm. The UV/vis spectrum revealed the surface plasmon absorbance at 528 nm. The p-pi conjugated structure of the TPMT ligand was confirmed by nuclear magnetic resonance. Differential scanning calorimetry and Fourier transform infrared spectroscopy revealed the rigid nature of the TPMT chains.