95 resultados para Counting on underwater photo
Resumo:
The photoreduction current response on a polyaniline modified electrode is interpreted as photo-assisted reduction of oxygen dissolved in the electrolyte solution but not due to the excited species PAn* and PAn* dagger. The effect of light is just the same as that of the electrode rotating or of stirring of the electrolyte which accelerates the oxygen dissolved in the electrolyte solution to react with leucoemeraldine (reduced polyaniline). The potentiostat is set to reduce the oxidized polyaniline at constant potential, thus producing a reduction current.
Resumo:
In this study, at proper dosage of ultraviolet (UV) irradiation (180 sec: 36,000 erg/mm(2)), sperm chromosomes of left-eyed flounder, Paralichthys olivaceus, were inactivated, while spermatozoa maintained ability to move and inseminate eggs. Gynogenetic haploids were detected by morphological observation, chromosome counting, and flow cytometer analysis. The ultrastructure of treated sperm was observed under scanning electronic microscope (SEM) and transmission electronic microscope (TEM). The results showed that after being irradiated at lower dosage of irradiation (0-180 sec: 0-36,000 erg/mm(2)), the surface structure of spermatozoa was not affected by UV irradiation, while the inner structures including membrane system and karyoplasm denseness of treated spermatozoa were little changed. However, obvious changes were observed in their membrane system, mitochondria, and nucleus if the dosage of irradiation increased to 240 sec: 48,000 erg/mm(2) or 300 sec: 60,000 erg/mm(2). The sperm survival rates did not change at the lower dosages of the UV irradiation (0-180 sec: 0-36,000 erg/mm(2)) but decreased as the irradiation dosage increased. The motility of treated sperm was lower than that of control group in general but did not change with UV irradiation dosage increasing at the certain range of 0-300 sec: 0-60,000 erg/mm(2).
Resumo:
There is a need to obtain the hydrologic data including ocean current, wave, temperature and so on in the South China Sea. A new profiling instrument which does not suffer from the damage due to nature forces or incidents caused by passing ships, is under development to acquire data from this area. This device is based on a taut single point mid-water mooring system. It incorporates a small, instrumented vertically profiling float attached via an electromechanical cable to a winch integral with the main subsurface flotation. On a pre-set schedule, the instrument float with sensors is winched up to the surface if there is no strip passing by, which is defined by an on-board miniature sonar. And it can be immediately winched down to a certain depth if the sonar sensor finds something is coming. Since, because Of logistics, the area can only be visited once for a long time and a minimum of 10 times per day profiles are desired, energy demands are severe. To respond to these concerns, the system has been designed to conserve a substantial portion of the potential energy lost during the ascent phase of each profile and subsequently use this energy to pull the instrument down. Compared with the previous single-point layered measuring mode, it is advanced and economical. At last the paper introduces the test in the South China Sea.
Resumo:
Imaging mechanism of underwater topography by SAR and a underwater topography SAR detection model built on the theory of underwater topography detection with SAR image presented by Yuan Yeli are used to detect the underwater topography of Shuangzi Reefs in the Nansha Islands with three scenes of SAR images acquired in different time. Detection results of three SAR images are compared with the chart topography and the detection errors are analyzed. Underwater topography detection experiments of Shuangzi Reefs show that the detection model is practicable. The detection results indicate that SAR images acquired in different time also can be used to detect the underwater topography, and the detection results are affected by the ocean conditions in the SAR acquiring time.
Resumo:
In the present study, we used the eddy covariance method to measure CO2 exchange between the atmosphere and an alpine shrubland meadow ecosystem (37°36'N, 101°18'E; 3 250 m a.s.l.) on the Qinghai-Tibetan Plateau, China, during the growing season in 2003, from 20 April to 30 September. This meadow is dominated by formations of Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. During the study period, the meadow was not grazed. The maximum rates of CO2 uptake and release derived from the diurnal course of CO2 flux were -9.38 and 5.02 μmol•m-2•s-1, respectively. The largest daily CO2 uptake was 1.7 g C•m-2•d-1 on 14 July, which is less than half that of an alpine Kobresia meadow ecosystem at similar latitudes. Daily CO2 uptake during the measurement period indicated that the alpine shrubland meadow ecosystem may behave as a sink of atmospheric CO2 during the growing season. The daytime CO2 uptake was correlated exponentially or linearly with the daily photo synthetic photon flux density each month. The daytime average water use efficiency of the ecosystem was 6.47 mg CO2/g H2O. The efficiency of the ecosystem increased with a decrease in vapor pressure deficit.