108 resultados para Catalyst activity
Resumo:
The complex of (CH3Cp)2Yb . DME (DME = dimethoxyethane) has been synthesized by the reduction with metallic sodium of the corresponding chloride (CH3CP)2YbCl. (CH3CP)2Yb . DME crystallized from DME in the monoclinic space group Cm, with cell constants a = 11.068(3), b = 12.338(4), c = 12.479(4) angstrom; beta = 100.51(2)-degrees, V = 1675(l) angstrom3, and D0 = 1.66 g/cm3 for Z = 4. Least-squares refinement of 1420 unique observed reflections led to final R of 0.0487. This complex can be used as a catalyst for the polymerization of methyl methacrylate (MMA).
Resumo:
Only H2S consumption and H2O formation was found in the sulfurization of CoMoK/Al2O3 water gas shift catalyst with H2S/H-2. but CO2 was formed first, then CH4, H2O and H2S appeared in the later part of TPS with CS2/H-2. Carbon deposition on the catalyst during the sulfurization with CS2/H-2 caused a lower activity than the catalyst sulfurized with H2S but could be removed in the run of WGS reaction.
Resumo:
A series of potassium-promoted CoMo/Al2O3 has been investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and temperature-programmed reduction (TPR). CoMoO4 was found in the CoMo/Al2O3 catalyst by XRD and is destroyed by the presence of potassium. The reducibility of molybdenum is enhanced by potassium in the CoMoK/Al2O3 catalyst and is easier to reduce to Mo(IV) during sulfidation. In the oxidic state catalyst cobalt is increased on the surface by the addition of potassium. After sulfidation this phenomena disappeared, the distribution of cobalt remains at a constant level and is unaffected by the potassium content. The addition of potassium leads to a monotonical decrease of the molybdenum dispersion with the impregnating amount of potassium in the oxidic state catalyst but is more complicated after sulfidation. Potassium is well dispersed on the surface in both the oxidic and sulfided state. The activity in the water-gas shift reaction was correlated with the potassium content of CoMoK/Al2O3.
Resumo:
The hydrogenation of alkali metals using lanthanide trichloride and naphthalene as catalyst has been studied. LnCl3(Ln = La, Nd, Sm, Dy, Yb) and naphthalene can catalyze the hydrogenation of sodium under atmospheric pressure and 40-degrees-C to form sodium hydride. The activities of lanthanide trichlorides are in the following order: LaCl3 > NdCl3 > SmCl3 > DyCl3 > YbCl3. Although lithium proceeds in the same catalytic reaction, the kinetic curve of the lithium hydrogenation is different from that of sodium. Lanthanide trichlorides display no catalytic effect on the hydrogenation of potassium in presence of naphthalene. The mechanism of this reaction has been studied and it is suggested that the anion-radical of alkali metal naphthalene complexes may be the intermediate for the hydrogenation of alkali metals and the function of LnCl3 is to catalyze the hydrogenation of the intermediate. The products are porous solids with high specific surface area (83 m2/g for NaH) and pyrophoric in air. They are far more active than the commercial alkali metal hydrides. The combination of these hydrides with some transition metal complexes exhibits high catalytic activity for the hydrogenation of olefins.
Resumo:
Three sulphated polysaccharide derivatives (oversulphated, acetylated and benzoylated fucoidan) were successfully synthesized, and their antioxidant activities were investigated employing various established in vitro systems. A novel catalyst N-bromosuccinimide (NBS) was used in acetylation and benzoylation reaction, and the degree of acetylation was evaluated using IR and NMR spectra. Both fucoidan derivatives possessed considerable antioxidant activity, and had stronger antioxidant ability than fucoidan in certain tests. The benzoylated fucoidan showed strongest superoxide and hydroxyl radical scavenging activity, however, the acetylated fucoidan exhibited strongest activity on scavenging DPPH radical and reducing power. Available data obtained with in vitro models suggested that substituted groups of fucoidan played an important role on antioxidant activity. The mechanism on the antioxidant activity of sulphonyl, acetyl and benzoyl group is different. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The polymer-supported bimetallic catalyst FVP-PdCl2-2CuCl(2) (PVP, poly(N-vinyl-2-pyrrolidone), obtained in situ by the addition of CuCl2 to an alcoholic solution of PVP-PdCl2, exhibits high selectivity and activity for the oxidative carbonylation of aniline with carbon monoxide and oxygen to ethyl N-phenylcarbamate in the presence of a base (NaOAc) under atmospheric pressure. The strong synergic effect of Pd-Cu gives rise to a clear increase in the selectivity and activity. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Simultaneous NO reduction and CO oxidation in the presence of O-2,H2O and SO2 over Cu/Mg/AUO (Cu-cat), Ce/Mg/Al/O (Ce-cat) and Cu/Ce/Mg/Al/O (CuCe-cat) were studied. At low temperatures (<340 degreesC), the presence of O-2 or H2O enhanced the activity of CuCe-cat for NO and CO conversions, but significantly suppressed the activity of Cu-cat and Ce-cat, At high temperature (720 degreesC), the presence of O-2 or H2O had no adverse effect on the NO and CO conversions over these catalysts. The addition of SO2 to NO + CO + O-2 + H2O system had no effect on the, reaction of CO + O-2 over Cu-cat, but deactivated this catalyst for NO + CO and CO + H2O reactions; over Ce-cat, all of these reactions of NO + CO, CO + O-2 and CO + H2O were suppressed significantly; over CuCe-cat, NO + CO and CO + O-2 reactions were not affected while the reaction of CO + H2O was slightly inhibited. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The addition of ZnO or ZrO2 into CuO/HZSM-5 was investigated for DME synthesis from syngas by using the reactive frontal chromatography method, TPR and in situ TPR. These promoters enhanced the catalytic activity of Cu/HZSM-5 and promotion with ZnO and ZrO2 produced a maximum activity, which could be explained by the improvement of the dispersion of Cu and the promotion of CuO reduction. The Cu+ species existing during the reaction have been detected, based on which a Cu-0 <-> Cu+1 redox cycle model was put forward.
Resumo:
The polymer-supported bimetallic catalyst PVP-PdCl2-MnCl2 (PVP=poly(N-vinyl-2-pyrrolidone)) exhibits high activity and selectivity for the oxidative carbonylation of amines with carbon monoxide and oxygen to carbamate esters under atmospheric pressure in the presence of a base (NaOAc). This catalyst is prepared by the addition of MnCl2 to the alcoholic solution of PVP-PdCl2 in situ. A remarkable bimetallic synergic effect and the role of PVP in PVP-PdCl2-MXn (MXn=the second transition metal component such as NiCl2, CoCl2, MnCl2 and FeCl3) gives rise to an obvious increase in the conversion and selectivity for the reaction. Among the second metal components tested, Mn-Pd exerts the strongest synergic effect. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Hydrogenation of nitrobenzene can be catalyzed by the water-soluble catalyst PdCl2(TPPTS)(2) (TPPTS = tris(m-sulfonatophenyl)phosphine trisodium salt) under normal pressure at 65 degrees C in H2O/toluene biphasic solvent system. The exhibits higher catalytic activity and selectivity for the hydrogenation of aromatic nitrocompounds, compared with PdCl2(TPPTS)(2) or H2PtCl6 alone. The transmission electron micrographs demonstrate that the monometallic catalyst is composed of ultrafine palladium particles of almost uniform size while the particles of bimetallic catalyst are more widely distributed in size than those of the monometallic ones. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A highly active catalyst, MnOx/TiO2-Al2O3, was prepared by impregnating MnOx species on TiO2-modified Al2O3. The TiO2 species in TiO2-Al2O3 support is in a monolayer dispersion, and the MnOx species is again highly dispersed on TiO2-Al2O3 Support. The total oxidation of chlorobenzene and o-dichlorobenzene on MnOx/TiO2-Al2O3 catalyst can be achieved at 300 degreesC and 250 degreesC respectively, at the space velocity of 8000 h(-1). The activity of MnOx/TiO2-Al2O3 catalyst (Mn loading 11.2 wt%) is gradually increased in the first 10-20 h and then keeps stable at least for the measured 52 h at 16,000 h(-1). Furthermore, no chlorinated organic byproducts are detected in the effluent during the oxidative destruction of chlorobenzene and o-dichlorobenzene. It is proposed that the partially chlorinated and highly dispersed manganese oxide on a monolayer TiO2-modified Al2O3 is responsible for the high and stable activity for the total oxidation of chlorinated aromatics. (C) 2001 Academic Press.
Resumo:
The selective oxidation of ethylene to acetic acid was investigated on Pd-acid/support catalyst system. The catalytic activity is influenced strongly by the acidity of the catalyst. The stronger the catalyst acidity the higher the catalytic activity. The nature of the support also influences the activity of the catalyst substantially. The catalyst has highest activity when it exhibits highest acidity on silica.
Resumo:
We present a novel method for preparing an ultra-uniform Raney-Ni catalyst, which includes melt-quenching, hydrogen treatment and leaching in an alkali solution. The resultant catalyst shows superior activity in the reaction of cyclohexanone hydrogenation. X-ray diffraction (XRD) and XPS have been employed to characterize the catalysts. As demonstrated, the pretreatment with hydrogen caused a distinct phase transfer of the Ni-Al alloys, forming more of the Ni2Al3 component. In the subsequent leaching process, the Ni2Al3 component shows high activity and the resultant catalyst exhibits high surface areas and small pores. Moreover, metallic Al in the hydrogen-pretreated alloy appeared to be leached more easily and thus the aluminium species remaining on the catalyst surface is aluminium oxide predominantly, which serves as a matrix to stabilize active Ni species on the surface. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
A new FeCoMnAPO-5 with AFI structure was synthesized under hydrothermal conditions and characterized by XRD, FT-IR, X-ray fluorescence, nitrogen adsorption and SEM. The oxidation of cyclohexane with molecular oxygen was studied over the catalyst at 403 K. It show d higher activity compared to FeAPO-5, CoAPO-5 and MnAPO-5. The FeCoMnAPO-5 catalyst was recycled twice without loss of activity or selectivity.
Resumo:
A novel approach for attaching well-dispersed cobalt nanoparticles homogeneously onto carbon nanotubes via metal organic chemical vapor deposition technique is reported. The obtained Co/CNTs catalysts feature a narrow size distribution of Co particles centering around 7.5 nm, and show high activity and regioselectivity for hydroformylation of 1-octene.