382 resultados para COPPER ELECTRODE
Resumo:
Cu samples were subjected to high-pressure torsion (HPT) with up to 6 turns at room temperature (RT) and liquid nitrogen temperature (LNT), respectively. The effects of temperature on grain refinement and microhardness variation were investigated. For the samples after HPT processing at RT, the grain size reduced from 43 mu m to 265 nm, and the Vickers microhardness increased from HV52 to HV140. However, for the samples after HPT processing at LNT, the value of microhardness reached its maximum of HV150 near the center of the sample and it decreased to HV80 at the periphery region. Microstructure observations revealed that HPT straining at LNT induced lamellar structures with thickness less than 100 nm appearing near the central region of the sample, but further deformation induced an inhomogeneous distribution of grain sizes, with submicrometer-sized grains embedded inside micrometer-sized grains. The submicrometer-sized grains with high dislocation density indicated their nonequilibrium nature. On the contrary, the micrometer-sized grains were nearly free of dislocation, without obvious deformation trace remaining in them. These images demonstrated that the appearance of micrometer-sized grains is the result of abnormal grain growth of the deformed fine grains.
Resumo:
A capillary electrophoresis microchip coupled with a confocal laser-induced fluorescence (LIF) detector was successfully constructed for the analysis of trace amounts of heavy metals in environmental sources. A new fluorescence dye, RBPhOH, synthesized from rhodamine B, was utilized in a glass microchip to selectively determine copper with high sensitivity. A series of factors including running buffer concentration, detection voltage, and sample loading time were optimized for maximum LIF detector response and, hence, method sensitivity.
Resumo:
Arc root behavior affects the energy transfer and nozzle erosion in an arcjet thruster. To investigate the development of arc root attachment in 1 kW class N2 and H2-N2 arcjet thrusters from the time of ignition to the stably working condition, a kinetic series of end-on view images of the nozzle obtained by a high-speed video camera was analyzed. The addition of hydrogen leads to higher arc voltage levels and the determining factor for the mode of arc root attachment was found to be the nozzle temperature. At lower nozzle temperatures, constricted type attachment with unstable motions of the arc root was observed, while a fully diffused and stable arc root was observed at elevated nozzle temperatures.
Resumo:
To improve the cycle life of unitized regenerative fuel cells (URFCs), an electrode with a composite structure has been developed. The cycle life and polarization curves for both fuel cell and electrolysis modes of URFC operation were investigated. The cycle life of URFCs was improved considerably and the performance was fairly constant during 25 cycles, which illustrates that the composite electrode is effective in sustaining the cyclic performance of URFCs. It shows the URFCs with such an electrode structure are promising for practical applications. (C) 2004 The Electrochemical Society.