117 resultados para Biomimetic coating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal barrier coatings (TBCs) of La2Zr2O7 (LZ) with the addition of 3 wt.% Y2O3 (LZ3Y) were deposited by electron beam-physical vapor deposition (EB-PVD). The phase stabilities, thermophysical and mechanical properties, and chemical compositions of these ceramics and coatings were studied in detail. The phase stability and thermal expansion behavior of LZ3Y bulk material are identical to those of LZ bulk material, but the mechanical properties of the former are superior to those of the latter. Elemental analysis and X-ray diffraction indicate that compositional deviation of LZ coating can be optimized after doping by 3 wt.% Y2O3, Y2O3 acts as a dopant as well as a process regulator. The optimal composition of LZ3Y coating could be effectively achieved by the addition of excess Y2O3 into the ingot and by properly controlling the current of electron beam (i.e. similar to 650 mA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new biocompatible film based on chitosan and poly(L-glutamic acid) (CS/PGA), created by alternate deposition of CS and PGA, was investigated. FT-IR spectroscopy, UV-vis spectroscopy and QCM were used to analyze the build-up process. The growth of CS and PGA deposition are both exponential to the deposition steps at first. After about 9 (CS/PGA) depositions, the exponential to linear transition takes place. QCM measurements combined with UV-vis spectra revealed the increase in the multilayer film growth at different pH (4.4, 5.0 and 5.5). The build-up of the multilayer stops after a few depositions at pH = 6.5. A muscle myoblast cell (C2C12) assay showed that (CS/PGA)(n) multilayer films obviously promote C2C12 attachment and growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum-zirconium-cerium composite oxide (La-2(Zr0.7Ce0.3)(2)O-7, LZ7C3) as a candidate material for thermal barrier coatings (TBCs) was prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, thermophysical properties, surface and cross-sectional morphologies and cyclic oxidation behavior of the LZ7C3 coating were studied. The results indicated that LZ7C3 has a high phase stability between 298 K and 1573 K, and its linear thermal expansion coefficient (TEC) is similar to that of zirconia containing 8 wt% yttria (8YSZ). The thermal conductivity of LZ7C3 is 0.87 W m(-1) K-1 at 1273 K, which is almost 60% lower than that of 8YSZ. The deviation of coating composition from the ingot can be overcome by the addition of excess CeO2 and ZrO2 during ingot preparation or by adjusting the process parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To improve the reproducibility, stability, and sensitivity of bismuth film electrode (BiFE), we studied the performances of a mixed coating of two cation-exchange polymers, Nafion (NA) and poly(sodium 4-styrenesulfonate) (PSS), modified glassy carbon BiFE (GC/NA-PSS/BiFE). The characteristics of GC/NA-PSS/BiFE were investigated by scanning electron microscopy and cyclic voltammetry. Various parameters were studied in terms of their effect on the anodic stripping voltarnmetry (ASV) signals. Under optimized conditions, the limits of detection were 71 ng L-1 for Cd(II) and 93 ng L-1 for Pb(II) with a 10 min preconcentration. The results exhibited that GC/NA-PSS/BiFE can be a reproducible and robust toot for monitor of trace metals by ASV rapidly and environmentally friendly, even in the presence of surface-active compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts, H-2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y2O3), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr2O7 (R=La, Ce, Nd, Gd), CeO2-YSZ, RMeAl11O19 (R=La, Nd; Me=Mg, Ca, Sr) and LaPO4. The concept of double-ceramic-layer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dithiols of N-hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole (HDMC) have been synthesized and employed to form self-assembled monolayers (SAMs) on gold. One characteristic of the HDMC molecule is its peculiar molecular structure consisting of a large and rigid headgroup and a small and flexible alkyl-chain tail. HDMC adsorbates can attach to gold substrates by a strong Au-S bond with weak van der Waals interactions between the alkyl-chain tails, leading to a loosely packed hydrophobic SAM. In this way we can couple hybrid bilayer membranes (HBMs) to gold surfaces with more likeness to a cell bilayer than the conventional HBMs based on densely packed long-chain alkanethiol SAMs. The insulating properties and stability of the HDMC monolayer as well as the HDMC/lipid bilayer on gold have been investigated by electrochemical techniques including cyclic voltammetry and impedance spectroscopy. To test whether the quality of the bilayer is sufficiently high for biomimetic research, we incorporated the pore-forming protein a-hemolysin) and the horseradish peroxidase into the bilayers, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica coating on Gd2O3:Eu particles was obtained by a simple method, e.g. solid-state reaction at room temperature. The urea homogeneous precipitation method was used to synthesize the Gd2O3:Eu cores. Transmission electron microscopy (TEM) shows that the core particles are spherical with submicrometer size which is the soft agglomerates with nanometer crystallites. The TEM morphology of coated particles shows that a thin film is coated on the surface of Gd2O3:Eu cores. Scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analysis indicate that the coating of silica can be used to avoid agglomeration of Gd2O3:Eu particles to obtain smaller particles. X-ray photoelectron spectra (XPS) show that silica is coated on the surface of core particles by forming the chemical bond. Photoluminescence (PL) spectra conform that Gd2O3:Eu phosphors remain well-luminescent properties by the silica coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk material and coatings of Lanthanum-Cerium Oxide (La2Ce2O7) with a fluorite structure were studied as a candidate material for thermal barrier coating (TBC). It has been showed that such material has the properties of low thermal conductivity about four times lower than YSZ, the difference in the thermal expansion coefficient between La2Ce2O7 and bond coat is smaller than that of YSZ in TBC systems, high phase stability between room temperature and 1673 K, about 300 K higher than that of the YSZ. The coating prepared by electron beam physical vapor deposition (EB-PVD) showed that it has good thermal cycling behavior, implying that Such material can be a promising thermal barrier coating material. The deviation of coating composition from ingot can be overcome by the addition of excess La2O3 during ingot preparation and/or by adjusting the process parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neodymium-cerium oxide (Nd2Ce2O7) was proposed as a new thermal barrier coating material in this work. Monolithic Nd2Ce2O7 powder was prepared by the solid-state reaction at 1400 degrees C. The phase composition, thermal stability and thermophysical properties of Nd2Ce2O7 were investigated. Nd2Ce2O7 with fluorite structure was thermally stable in the temperature range of interest for TBC applications. The results indicated that the thermal expansion coefficient (TEC) of Nd2Ce2O7 was higher than that of YSZ (6-8 Wt-% Y2O3 + ZrO2) and even more interesting was the TEC change as a function of temperature paralleling that of the superalloy bond coat. Moreover, the thermal conductivity of Nd2Ce2O7 is 30% lower than that of YSZ, which was discussed based on the theory of heat conduction. Thermal barrier coating of Nd2Ce2O7 was produced by atmospheric plasma spraying (APS) using the spray-dried powder. The thermal cycling was performed with a gas burner test facility to examine the thermal stability of the as-prepared coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y2O3 + ZrO2) and lanthanum zirconate (LZ, La2Zr2O7) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 degrees C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 mu m have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 mu m, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 mu m, the failure mainly occurs at the interface of the YSZ layer and the bond coat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer concentration and shear and stretch field effects on the surface morphology evolution of three different kinds of polymers (polystyrene (PS), polybutadiene (PB) and polystyrene-b-polybutadiene-b-polystyrene (SBS)) during the spin-coating were investigated by means of atomic force microscopy (AFM). For PS and SBS, continuous film, net-like structure and particle structure were observed at different concentrations. For PB, net-like structures were not observed and continuous films and radial array of droplets emerged. Moreover, we compared surface morphology transitions on different substrate locations from the center to the edge. For PS, net-like structure, broken net-like structure and irregular array of particles were observed. For SBS, net-like structure, periodically orientated string-like structure and broken-line structure appeared. But for PB, flower-like holes in the continuous film, distorted stream-like structure and irregular distributions of droplets emerged. These different transitions of surface morphologies were discussed in terms of individual material property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Y, Gd) BO3:Eu3+ particles coated with nano-hematite were prepared by a facile method I for example (humid) solid phase reaction at room temperature. The resulted hematite-coated (Y, Gd)BO3:Eu3+ particles were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) analysis, X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and photoluminescence spectra (PL). The SEM and EDS analyses indicate that the particles are coated with a very thin layer of iron oxide. XPS results further confirmed that the coating was hematite, and the coating thickness was in nanometer range. XRD patterns showed that either the hematite coating was too thin or the content of hematite was too small, so that the XRD cannot detect it. The emission spectra illustrate that the peak near 580 nm disappears due to the coating of iron oxide, and when the coating is very thin, the ratio of D-5(0)-> F-7(2) to D-5(2)-> F-7(1) of coated particles is higher than that of uncoated ones, which indicates that the color purity of the phosphor is increased by coating nano-hematite.