105 resultados para Bi-modal authentication
Resumo:
Oxidative dehydroaromatization of propylene was investigated by the pulse technique over two kinds of single oxide catalysts. With the Bi2O3 catalyst, the main dimer product was 1,5-hexadiene, and the dimerization activity was stable to pulse number even if the catalyst was partly reduced to the bulk. With the CeO2 catalyst, benzene was mainly formed instead of 1,5-hexadiene, but the activity decreased rapidly with increasing pulse number, indicating that only the lattice oxygen near the catalyst surface could be used for oxidative dimerization and the further aromatization. The Bi-Ce-O system catalyst was found in this study to give higher aromatization activity and showed better stability, compared to the Bi-Sn-O catalyst. Although the Bi-Ce-O catalyst was only a mixture of the two component oxides from X-ray diffraction analysis, there was a significant combination effect on the selectivity to benzene. The highest and the most stable selectivity of benzene was obtained at Bi/Ce = 1. In the TPD spectrum of Bi-Ce-O catalyst, there are not only the lattice oxygen (beta-oxygen) over 620-degrees-C due to the reduction of Bi2O3, but also a great deal of the alpha-oxygen desorbed about 400-degrees-C, which is considered the absorbed oxygen in the bulk. This absorbed oxygen could probably be a compensation of the lattice oxygen through the route of gaseous --> absorbed --> lattice oxygen in the binary catalyst system. By the kinetic study on the Bi-Ce-O catalyst, the dimer formation rate was the first-order with respect to the partial pressure of propylene and zero-order of oxygen. Although detail investigation would be made further, it was considered that the complete oxidation of propylene would mainly take place parallelly on some different sites, and the rate-determining step of propylene dimerization occurred probably between an adosrbed propylene and a gaseous one by an Eley-Rideal type mechanism.
Resumo:
本文研究了单掺和双掺(Tb~(3+)、Tb~(3+)+Gd~(3+)、Tb~(3+)+Dy~(3+)、Tb~(3+)+Bi~(3+)约四十余种不同成份的硼酸盐玻璃。探讨了玻璃成份对Tb~(3+)发光性质的影响和Gd~(3+)、Dy~(3+)、Bj~(3+)对Tb~(3+)的胜化作用。在B_2O_2-BaO-M_mO_n(M_mO_n=Li_2O、Na_2O、K_2O、MgO、CaO、SrO、Al_2O_3、La_2O_3和Bi_2O_3)玻璃体系中,当M_mO_n分别为MgO和Al_2O_3时,Tb~(3+)的发光强度最强;M_mO-n为Bi_2O_3时,Tb~(3+)的发光强度最弱。Tb~(3+)的特征发射峰分别随着碱金属、碱土金属和三价金属的离子半径增加而红移。Gd~(3+)、Dy~(3+)、Bi~(3+)对Tb~(3+)均有敏化作用。特别是Gd~(3+),使Tb~(3+)的发光强度增加1~3.8倍,其最佳敏化浓度,因基质玻璃成份而异。
Resumo:
早在六十年代,人们为了寻找较好的激光玻璃,曾对Sm~(3+)离子掺杂的玻璃中的光谱进行过研究。为了探寻新型的激光,发光玻璃,又进一步研究了Sm~(3+)在玻璃中的发光和敏化。我们以寻找一种高亮度,低成本的发光玻璃为目的,研究了基质玻璃组成,敏化离子及其浓度对Sm~(3+)发光性质的影响。 选择B_2O_3-BaO-M_mO_n(M_mO_n=Li_2O,Na_2O,K_2O,MgO,CaO,SrO)玻璃体系,所用原料的纯度皆为分析纯以上,用陶瓷坩埚在1250℃掺杂氧化钐(纯度均大于99%),玻璃的荧光谱和激发光谱,用MPF-4型荧光分光光度计测定。
Resumo:
本文对 Bi 系中可能存在一种 T_c>100K 的2212相作了进一步的论证.化学分析显示普通的2212相中 Cu~(3+)含量为~10%,而2223相和 T_c>100K 的2212相中 Cu~(3+)的含量却大于30%.从 DTA-TG 实验中观察到普通2212相和2223相失去晶格氧的量为0.8%,而含 T_c>100K 的2212相的样品失去晶格氧的量为~2%,说明这种2212相受氧含量影响更大.文中还介绍了一种简易判断样品中是否存在2223相和普通2212相的经验方法.
Resumo:
Bi_2Sr_2Ca_2Cu_3O_y-Ag_x、Bi_(1.7)Pb_(0.3)Sr_2Ca_2Cu_3O_y-Ag_x和Bi_(1.7)Pb_(0.3)Sr_2Ca_2Cu_(3.2)O_y-Ag_x系列的超导材料是用固相反应的方法合成的。原料为分析纯AgNO_3、PbO、Bi_2O_3、CaCO_3、SrCO~3和CuO。把试剂按所需配比混和研磨后,在800℃烧12h,研磨压片,片子在850℃烧结200h,破碎、研磨后,按配比加入AgNO_3·800℃灼烧12h,再次研磨、压片,850℃再烧结200h,炉冷至室温。
Resumo:
制备了一系列 Bi—Pb—Sr—Ca—Cu—O 超导材料。在一定范围内,不同组分的 Bi—Pb—Sr—Ca—Cu—O 样品都能得到接近单110K 相的材料,但样品性能差别极大.性能的好坏极大地依赖着组成条件。烧结温度过高或过低都不利于提高样品的临界电流密度,850℃的烧结温度是较合适的,长时间烧结有利于110K 相的形成。样品烧结完成后,应缓慢降温退火,以保证材料充分吸氧。
Resumo:
最近,Pb能加强BiSrCaCuO超导体中高T_c相(即2223相,其c(?)37,T_c(?)110K)的出现和掺入sb形成BiPbSbSrCaCuO的T_c可以达到132 K已见报道,我们希望通过其它元素的掺杂取代也出现类似的结果。我们做了大量掺Sb、Ba、In的实验,通过改变
Resumo:
研究了激活离子Eu~(3+),Dy~(3+)和Bi~(3+)在具有相同结构的LaMSb_2O_7(M=Li,Na,K)中的发光特性,得到了发白光的磷光体LaNaSb_2O_7:Dy~(3+)。讨论了化学键的共价程度对Eu~(3+)和Dy~(3+)超灵敏跃迁强度比的影响。发现当用281nm激发试样时,Bi~(3+)对Eu~(3+)具有敏化作用并解释了其原因。
Resumo:
丙烯在氧化物催化剂上氧化脱氢二聚反应的研究,文献上主要是在Bi-Sn系催化剂上进行的,不同研究者根据各自的结果,对这一步反应提出了两种不同的机理:一种认为是催化剂表面上吸附丙烯间的二聚(Langmuir-Hinshelwood型机)理;另一种认为是气相丙烯与吸附丙烯间的二聚(Eley-Rideal型机理).我们发现Bi-Ce二元氧化物显示出与Bi-
Resumo:
Swertia mussotii is an important species in Tibetan folk medicine. However, it is quite expensive and frequently adulterated, so reliable methods for authentication of putative specimens and preparations of the species are needed to protect consumers and to support conservation measures. We show here that the chloroplast (cp) DNA rpl16 intron has limited utility for differentiating S. mussotii from closely related species, since the cpDNA rpl16 sequences are identical in S. mussotii and two other species of Swertia. However, the rDNA internal transcribed spacer (ITS) sequences differ significantly between S. mussotii and all of 13 tested potential adulterants. Thus, the ITS region provides a robust molecular marker for differentiating the medicinal S. mussotii from related adulterants. Therefore, a pair of allele-specific diagnostic primers based on the divergent ITS region was designed to distinguish S. mussotii from the other species. Authentication by allele-specific diagnostic PCR using these primers is convenient, effective and both simpler and less time-consuming than sequencing the ITS region.
Resumo:
Novel mixed conducting oxides, B-site Bi-doped perovskites were exploited and synthesized. Cubic perovskite structures were formed for BaBi0.2COyFe0.8-yO3-delta (y less than or equal to 0.4) and BaBixCo0.2Fe0.8-xP3-delta (x=0.1-0.5) The materials exhibited considerable high oxygen permeability at high temperature. The oxygen permeation flux of BaBi0.2Co0.35Fe0.45O3-delta membrane reached about 0.77 x 10(-6) mol/cm(2) s under an air/helium oxygen partial pressure gradient at 900 degrees C, which was much higher than that of other bismuth-contained mixed conducting membranes. The permeation fluxes of the materials increased with the increase of cobalt content, but no apparent simple relationship was found with the bismuth content. The materials also demonstrated excellent reversibility of oxygen adsorption and desorption. Stable time-related oxygen permeation fluxes were found for BaBi0.2CO0.35Fe0.45O3-delta and BaBi0.3Co0.2Fe0.5O3-delta a membranes at 875 degrees C.
Resumo:
Ginseng is one of the most expensive Chinese herbal medicines and the effectiveness of ginseng depends strongly on its botanical sources and the use of different parts of the plants. In this study, a microchip electrophoresis method coupled with the polymerase chain reaction (PCR)-short tandem repeats (STR) technique was developed for rapid authentication of ginseng species. A low viscosity hydroxypropyl methylcellulose (HPMC) solution was used as the sieving matrix for separation of the amplified STR fragments. The allele sizing of the amplified PCR products could be detected within 240 s or less. Good reproducibility and accuracy of the fragment size were obtained with the relative standard deviation for the allele sizes less than 1.0% (n = 11). At two microsatellite loci (CT 12, CA 33), American ginseng had a different allele pattern on the electropherograms compared with that of the Oriental ginseng. Moreover, cultivated and wild American ginseng can be distinguished on the basis of allele sizing. This work establishes the feasibility of fast genetic authentication of ginseng species by use of microchip electrophoresis.