96 resultados para Auriferous mineralization
Resumo:
在峨眉山大火成岩省(ELIP)产出许多岩浆Cu-Ni-PGE岩浆硫化物矿床,如金宝山、杨柳坪、力马河、白马寨,以及大槽-阿布郎当矿化岩体。根据成矿元素组成特征,这些矿床可以区分为多种不同矿化类型,有以铂族元素为主贫铜镍的矿床,如金宝山Pt-Pd矿床;有含较高铂族元素和铜镍的矿床,如杨柳坪Ni-Cu-PGE矿床;也有贫铂族元素富铜镍的矿床,以力马河和白马寨Ni-Cu矿床最为典型。造成峨眉山大火成岩省中Ni-Cu-PGE岩浆硫化物矿床矿化类型变异的原因是什么?它们的母质岩浆性质如何,产生于怎样的熔融程度?既然能形成岩浆硫化物矿床,造成硫化物熔离的原因有哪些,什么因素起到了关键作用?这些矿化类型多样的Ni-Cu-PGE矿床的成矿岩浆有何差异?产生差异的原因是什么?带着这些疑问,通过借鉴国内外Ni-Cu-PGE岩浆硫化物矿床研究的经验,本文以金宝山铂钯矿、力马河镍矿及大槽-阿布郎当岩体的地球化学研究为基础,结合近几年来前人对杨柳坪,白马寨等矿床的系统研究,本文试图解决上述疑问。现在取得的主要认识有: 1) 根据成矿元素组成特征,可以把峨眉山大火成岩省中(ELIP)存在的Ni-Cu-PGE岩浆硫化物矿床分成多种不同的矿化类型,包括PGE矿床(例如金宝山Pt-Pd矿),Ni-Cu-PGE矿床(例如杨柳坪矿床),Ni-Cu矿床(例如力马河和白马寨矿床),以及弱矿化或不含矿的超镁铁质堆晶岩体(例如大槽-阿布郎当岩体)。通过对ELIP中几种类型Cu-Ni-PGE矿床成矿母岩浆的研究发现,它们均具有类似峨眉山苦橄岩的成分特征,表明母岩浆形成于较高程度的地幔部分熔融,并富集Ni和PGE。 2)硫化物熔离的多阶段性是导致矿床类型变异的一个重要因素。早期结晶矿物的分离结晶导致了金宝山母岩浆出现S的饱和,少量的浸染状硫化物被携带进入岩浆通道中发生了沉淀,继续富集PGE,形成了金宝山矿体。杨柳坪的母岩浆先发生了少量早期硫化物熔离丢失,PGE弱亏损的岩浆在后期上升过程中由于强烈的地壳混染,发生了大量硫化物熔离并发生堆积,形成杨柳坪矿体。力马河和白马寨的母岩浆在早期发生了较多的硫化物丢失,PGE强烈亏损的岩浆发生了二次以上的硫化物熔离,形成了力马河和白马寨矿体。 3) R因子(岩浆与熔离硫化物的比例)是决定ELIP中Cu-Ni-PGE矿床矿化类型变异的重要因素。金宝山矿床具有极高的R值(>10000),杨柳坪和朱布矿床具有中等的R值(2000~5000),而力马河矿床近似为在经过R=2000的硫化物熔离之后,残余岩浆再经过R=200的硫化物熔离。 4) 地壳混染程度的差异可能是造成ELIP中Ni-Cu-PGE矿床矿化类型发生变异的关键因素。金宝山矿床的地壳混染程度较低,可能主要是早期橄榄石和铬铁矿的分异结晶导致了岩浆中硫化物出现了饱和。对于大槽-阿布郎当矿化岩体,只是在岩体边缘的局部出现了硫化物熔离,可能是围岩混染造成的。对于杨柳坪Ni-Cu-PGE矿床、力马河和白马寨Ni-Cu矿床,从微量元素蛛网中明显的Nb-Ta负异常,高放射成因187Os丰度的初始Os同位素组成(γOs(t)=100~120),S同位素等反映出显著的地壳混染,因而出现大量硫化物熔离。
Resumo:
滇东南地区北西以弥勒-师宗断裂与扬子地块分界,南西以红河断裂为界与哀牢山断块毗邻,南连越北古陆,东部文麻断裂与南岭褶皱系连为一体,是我国重要的锡、银、铅、锌等矿产基地,自西向东分布着个旧、白牛厂和都龙三个超大型银锡多金属矿床,在这三个大型矿床附近各分布着一个大花岗岩体,个旧和老君山岩体已有相当多的研究,而对于薄竹山岩体、薄竹山岩体接触带周边矿床和与临近白牛厂矿床的研究则相对薄弱。本文主要对薄竹山岩体进行岩石学、地球化学研究,并且借助铅同位素,对薄竹山岩体接触带矿床和白牛厂矿床的成矿物质来源作了分析,阐明这些矿床的形成与薄竹山花岗岩体的关系。 薄竹山花岗岩体分两期侵入,第一期岩石类型主要为中粒黑云母二长花岗岩,属于过铝质花岗岩,主要形成于同碰撞阶段;第二期主要为细粒二长花岗岩,形成于板内的伸展环境。与第一期相比,第二期花岗岩更加富硅富碱、贫钙贫镁,稀土配分曲线显示Eu亏损更加强烈,更加富集Rb、Ta、Tb、Y,而亏损Ba、Sr、La、Ce等元素。Sr-Nd同位素显示,两期花岗岩可能分别来源于中元古界地壳和太古宙古老基底。 薄竹山岩体长石铅同位素组成均一,其接触带矿床矿石铅与岩体长石铅分布趋势一致,所以接触带矿石铅可能主要由薄竹山岩体提供。对于白牛厂矿床,除个别样品外,矿区内西北白羊矿段和东南部其他矿段矿石铅组成一致,说明整个白牛厂矿区的矿石铅来源比较单一,并且与薄竹山附近矿化点矿石具有相似的铅同位素分布范围,说明两种矿石铅来源可能相同,都来源于薄竹山花岗岩浆。白牛厂矿区内赋矿地层铅与矿石铅同位素演化趋势完全不同,所以赋矿地层不可能为矿石铅的重要来源。 综合薄竹山岩体及矿石的铅同位素组成特征,我们发现白牛厂矿区内矿石铅主要来自薄竹山岩体,主要为矿区内隐伏岩体提供。白牛厂矿床早期可能发生过喷流沉积作用,但没有带来大量银、铅、锌等成矿物质,后来燕山期花岗岩浆侵入,带来大量银、铅、锌等成矿物质,形成了现在的白牛厂矿床。
Resumo:
地幔柱概念在19世纪60至70年代就被提出,但是由于板块构造理论在解释地球上岩浆活动的分布规律时取得了空前的成功,在当时这一理论是被排斥的。板块边界概念可以解释地球上绝大部分的岩浆产出,但在解释板内岩浆的成因时往往显得力不从心,尽管这些岩浆的体积只占地球岩浆总量的2%。地幔柱理论模型发展到现在得到不同学科的支持。地质学、地球化学、地球物理学、古生物学、比较行星学、实验岩石学等等都提供了直接或间接的证据,证明地幔柱几乎存在整个地:质历史时期。当前地幔柱理论中在地球化学领域有两大研究热点:高钦低钦玄武岩的起源以及地幔柱中是否存在循环俯冲洋壳物质。完全解决这些问题才可能深入系统地建立地慢柱成矿作用模型。现在已经建立了一些矿床类型与地慢柱作用的联系:如现在认为赋存在金伯利岩中的金刚石矿床的形成与地慢柱作用密不可分,一些岩浆硫化物矿床和岩浆氧化物矿床很显然是地慢柱岩浆作用形成的,如西伯利亚火成岩省的Noril'sk-Talnakh铜镍铂族元素矿床以及KeweenawaJI大陆裂谷体系的Dultlth杂岩体的Cu-Ni矿床。另外还有赋存在大型基性一超基性层状岩体中的PGE、Ni和cu矿床,如Great Dyke和布什维尔德杂岩体。一些超大型热液矿床也与地慢柱有可能的联系(Pirajno,2000):如270oMa形成的超大型Kidd Creek火山成因块状硫化物矿床(Bleeker et al.,1 999;Wynan et al.,1999)和南澳大利亚1600Ma形成的超大型olymPicD翻矿床。本文的研究工作包含两方面内容:通过热力学计算峨眉山玄武岩在深部的结晶分异,对峨眉山大火成岩省的岩浆量分布和岩浆氧化物矿床(华Ti磁铁矿矿床)的分布以及下地壳高波速层的物相进行理论解释;对峨眉山大火成岩省金宝山PGE典型矿床进行成岩成矿的地球化学研究,预测整个大火成岩省的岩浆硫化物矿床产出位置。大多数峨眉山玄武岩的 MgO<7%,Ni为4-232ppm,它们是原始岩浆结晶分异后的产物。峨眉山玄武岩省下地壳和上地幔之间存在厚度为:8-25km1,P彼速为7.1-7.8km/s的附加层(高地震波速层)。滇西地区出露的洲套第三纪富碱斑岩,地球化学和同位素研究表明斑岩的岩浆源是来自“壳一慢混合层”,源区的形成时代为220-25Ma,与峨眉山玄武岩的形成时代一致。所以有理由认为该附加层是由峨眉山玄武岩在此结晶分异形成的。与地慢柱有关的洋岛Hawaii、Marquesas Islands;海底高原Oniong Java、大陆火山岩省ColumbiaRiver Plateaus地震彼研究都表明在上地慢顶部有一高速附加层,Farnetani etal.(1996)的研歼表明高速附加层是由来自地幔柱的岩浆在此结晶分异形成的。玄武岩是一种混合的部分熔融产物,是不同成分的地幔橄榄岩在不同的压力下熔出的。这种降压熔融高温高压实验是做不到的。熔出的熔体成分是温度、压力及橄榄岩成分(源区)的函数,形成的岩浆是一个多压熔融的集合体。热力学计算能够较为精确地计算出生成的岩浆成分和约束岩浆产生的过程。岩浆的结晶分异也是同样的情形,尤其是分离结晶过程,实验岩石学是很精确难模拟其过程的。热力学计算使用的MELTS程序,MELTS适用范围很广,适用于模拟岩石熔融生成岩浆和岩浆的冷却结晶。现今峨眉山大火成岩省的地壳厚度为40恤,这被认为是后期褶皱加厚的缘故。根据峨眉山玄武岩中辉石斑晶成分和玄武岩本身成分计算出分异结晶的压力为6kb,那么当时的地壳厚度约为20km:选择氧逸度为QFM,这一氧逸度范围认为是大多数大陆溢流玄武岩结晶分异时的氧化还原环境。热力学计算结果通过峨眉山玄武岩成分进行约束和验证。Al2O3、NaZO+K 20、CaO与MgO计算的演化趋势线与实际观察的演化符合较好,橄榄石和斜方辉石的结晶使得CaO随着MgO的降低而增高;当单斜辉石成为液相线矿物时,cao也随着Mgo的降低而降低了。单斜辉石在岩浆演化到MgO=10.3%时成为液相线矿物。整个计算过程中斜长石未成为液相线矿物,这与大多数玄武岩不具有Eu异常是一致的,并月_Al2O3随着MgO的减小单调增加也说明了这点。不过大多数峨眉山玄武岩常含有斜长石斑晶,这是低压下结晶分异的结果。由于斜长石密度小,所有很难与高铁玄武岩分离。整个计算的难点也是创新点是波速计算。通过分离的堆晶矿物组合中各种矿物的成分和质量分数计算的附加层波速比观察值高,不过堆积岩体常常会有残留岩浆存在矿物晶粒间,这样会降低岩石的压缩波速。大型基性一超基性岩体常常会残留有或者捕获5-30%的岩浆。假定两个高波速附加层分别捕获7叭,和巧%的残留岩浆,计算的结果就大体等于观察值。热力学和质量平衡计算研究表明:高地震波速层为橄榄辉石岩一辉石岩的巨型侵入岩体;峨眉山中岩区的岩浆量最大也符合含V-Ti磁铁矿矿床只产在中岩区,如太和、白马、攀枝花、红格等岩体;西岩区的岩浆量最小表明几乎没有可能在西岩区形成有规模的V-Ti磁铁矿矿床,实际观察仅仅只见到数量少而小的岩体;东岩区下地壳厚达20灿1的高波速层暗示东岩区上地壳的侵入岩体积也应该具有相当规模,应该是V-Ti磁铁矿矿床成矿区。目前在东岩区很少发现与峨眉山玄武岩有关的岩浆矿床的主要原因是:东岩区的剥蚀深度不够,没有可观的侵入岩体出露,而中岩区侵入岩都侵入在元古代地层中。按照质量平衡的计算方法,最保守的估算整个峨眉地慢柱岩浆事件产生的岩浆量为8.9*106km3,上地壳峨眉山玄武岩和侵入岩体积为3.9*106km3。如果按照初始覆盖面积5x106km2计算(与西伯利亚暗色岩初始覆盖面积相当),喷发高峰期为2Ma,计算的喷发速率为3.9km3/year。这并不亚于西伯利亚暗色岩的喷发速率4km3/year。这对于研究峨眉山大火成岩浆事件与二叠·三叠交界或end-QuadaluPian生物灭绝之间的可能联系具有重要意义。本文另一方面的研究工作是:首先系统地介绍了岩浆硫化物矿床的基本原理,然后通过金宝山PGE矿床实例研究,提出金宝山岩体成岩模式,并且对整个峨眉山大火成岩省的岩浆硫化物矿床产出位置进行理论预测。详细地球化学研究表明金宝山镁铁一超镁铁岩是峨眉山大火成岩省古老火山岩浆房的残留物。岩体主要由底部超镁铁岩和上部镁铁岩组成,两种岩石的质量大致相同。根据超镁铁岩的矿物组合计算的成岩时的氧逸度较高,热力学方法计算的成岩压力为2kb左右。超镁铁岩的包嵌结构和铁铁岩的微晶一细晶结构说明超镁铁岩为镁铁岩结晶的矿物堆积形成的。镁铁一超镁铁岩的蚀变程度不同以及Sc、Sr、Eu等元素在两类岩石中的不同特征指示了整个成岩过程。金宝山岩体的原始岩浆 MgO=8%说明高镁玄武岩并不是形成PGE矿床的必要条件。金宝山的成岩模式是:在火山喷发前,岩浆侵位时橄榄石和少量铬尖晶石先结晶,沉淀在岩浆房底部;随后结晶的是斜方辉石和斜长石,斜方辉石也沉淀在岩浆房底部,斜长石由于密度较小集中中岩浆房上部,岩浆房的中部是:少量的斜长石小斑晶。由于斜方辉石和斜长石的结晶,这样岩浆中的Sc、Sr和Eu就会亏损,也是岩浆房底部堆积岩的原始捕获岩浆。火山喷发后,由于压力的突然降低,岩浆房底部的堆晶会发生再熔融,几乎消耗掉所有的斜方辉石,橄榄石也呈熔蚀状浑圆形态,重新熔融的斜方辉石导致超镁铁岩中残留岩浆比原始捕获岩浆更加富Sc,这种岩浆由于富MgO和在快速冷却的环境下同时结晶,最终形成光性方位一致的单刹辉石。喷发后岩浆房空间的剩余导致围岩-灰岩进入,造成岩浆房中剩余岩浆强烈的碳酸盐化。峨眉山玄武岩Cr-Mg#的相关关系定义一条正常玄武岩演化线。大多数这些玄武岩的Ni也保持了这种演化关系,其中低钦玄武岩和过渡型高钦玄武岩Ni-Mg#相关关系远离了正常演化线,这些玄武岩的Cu-Mg#相关关系也有类似的情形。峨眉山低钦和过渡类型高钦玄武岩Ni和 Cu的非正常亏损,表明它们在地表下经历了硫饱和事件。金宝山岩浆硫化物矿床成岩模型的建立,为在整个大火成岩省寻找岩浆硫化物矿床提供了一种新认识。低钦和过渡型高钦玄武岩的古老火山口下部是岩浆硫化物矿床的所在地。
Resumo:
矿化剂在热液矿床成矿过程中的重要作用一直为人们所关注,矿化剂地球化学行为直接影响成矿元素的富集成矿,不同的矿化剂元素可能对金属成矿具有一定的专属性。本文以著名的江西德兴铜厂超大型斑岩铜矿床和大吉山钨矿床作为研究对象,研究F、Cl与W、Cu成矿的关系。主要的认识如下:(1)F在花岗质岩浆中,可以降低岩浆的粘度、密度、固液相线温度、改变熔体结构,而Cl对熔体结构没有多大的影响。F在流体一花岗质熔体相间,绝大多数配分系数小于1.0,趋向于熔体相中配分,DF随体系中F浓度的升高而增加。Cl在流体一花岗质熔体相间的配分系数均大于1.0,且Dc1 随体系中Cl浓度的升高而增大·Cl强烈地趋向富集于流体相中。(2)Cu在流体一花岗质熔体作用过程中,铜总趋向于流体相中分布(DCu都大于1)。特别是在富Cl流体中Cu浓度较高,说明在富含Cl的热液流体能够从共存的熔体中活化迁移出大量的 Cu,S的加入DCu有降低的趋势。钨趋向于熔体相中富集,其配分系数大多小于1.0。(3)德兴铜厂花岗闪长斑岩属钙碱性系列岩石属I型花岗岩类,具有埃达克岩的特征。岩浆来源于深部,在结晶演化过程中发生了围岩物质的混染,这种高铜含量围岩的混染使成矿物质在岩浆中得到富集,有利于铜的活化、迁移。在铜厂岩体不同的蚀变带中,SiO2、K2O、Cu、Mo等从新鲜斑岩甚至弱蚀变带中带出,而在强蚀变带强烈富集,Cl同样有在强蚀变岩石中富集的趋势;而Na2O、Fe从斑岩体中带出,进入流体相中,流体中大量Fe的存在,有利于铜的沉淀、富集成矿。(4)德兴铜厂斑岩体微量元素和稀土元素地球化学特征表明,该岩体发生了流体一熔体作用,分异出来的流体是一种相对富氯的流体,同时成矿流体的流向是从岩体中心向接触带方向流动。(5)大吉山花岗岩具有高SiO2、A/CNK值,显示过铝质特点。黑云母花岗岩是壳源花岗岩但又受到慢源岩浆或慢源流体的影响。随着花岗岩的演化(从I→II→III)SiO2、K2O+Na2O逐渐增加,ΣFe、Al2O3、CaO、F含量降低,为成矿提供了大量的矿化剂(F)和沉淀剂(Fe、Ca)。Eu负异常从I至III阶段花岗岩逐渐加强,表明该岩浆经历了高度的分异演化。(6)大吉山花岗岩类稀土元素具有“四重效应”配分的特点以及微量元素对玲Rb、Y/Ho、Zr/Hf以及Nb/Ta发生明显分异,暗示在花岗岩岩浆的演化过程中,经历了充分的流体一熔体作用,同时分异出大量富含F、W等矿化剂元素和成矿元素的热液流体,致使钨矿的形成。大吉山石英脉型钨矿的成矿年龄大约在155 Ma。(7)通过对成矿流体和花岗质岩石黑云母、白云母中卤素相对逸度的研究(log(H2O/fHCl)fluid、log(fHF/fHCl)fluid)发现,铜厂斑岩型铜矿床的成矿体系是相对富氯体系,而大吉山石英脉型钨矿床成矿体系相对富氟,同时氟可能主要迁移W、Sn、Nb、Ta等金属元素。(8)结合斑岩型铜矿床成矿流体特征,铜主要以C1的络合物形式存在和迁移,迁移形式主要是CuCl0、CuCl2等。石英脉型钨矿床中,钨主要以钨酸、钨酸盐及其离解形式存在和迁移,如WO42-、HWO4-、NaHWO4、Naw伍.等;在高度富氟的成矿流体中,钨的氟氧络合物(如WO3F-,WO2F42-等)对钨迁移也具有重要的作用。因此,不同矿化剂类型具有一定的成矿专属性,热液铜矿床主要与Cl、S有 关,而热液钨矿床大多与F有关。
Resumo:
燕山期(205~65Ma)山东地区地壳活动强烈,构造体系已由古亚洲构造域完全转化为滨太平洋构造域,构造活动导源于太平洋板块对欧亚板块的俯冲。由于太平洋板块对欧亚板块的俯冲(NW向),鲁东地区岩石圈发生了快速拆沉减薄作用.同时鲁东地区也可能会出现地l漫柱的活动;另外,在太平洋板块俯冲作用影响下,炎区庐断裂(山东称沂沐断裂)带发生了大型左行走滑剪切和拉张活动。以上构造因素加上早白至世末一晚白至世期间燕山造山带的垮塌,都可能为山东地区中生代地壳拉张提供了动力条件。山东地区中生代(燕山期)基性脉岩特别发育,这些慢源基性岩脉充填张性裂隙,是大陆地壳拉张的标志;另外,山东地区也存在大量拉张背景下的燕山期火山岩和碱性岩。但关于它们的年代学和系统的地球化学研究还比较薄弱,且对其成因和形成的构造环境,仍存在着争议。本论文主要从同位素年代学、岩石化学、地球化学和Sr-Nd-Pb同位素方面对山东地区燕山期基性脉岩、火山岩和碱性超基性脉岩进行了系统研究。同时,考虑到鲁东地区煌斑岩中金含量普遍较高,且燕山期又是山东金矿的主成矿期,论文中对煌斑岩与金成矿之间的关系也作了一定的研究。通过研究,得出以下主要认识:1、火山岩为一套以钙碱性安山岩为主,含少量拉斑玄武岩和英安岩。成因上为富集地慢部分熔融作用的结果,但在成岩过程中也可能存在单斜辉石、斜长石、橄榄石和Ti-Fe氧化物等矿物的分离结晶作用。碱性超基性脉岩岩性上为单一的橄榄辉石岩,为富集地慢源低度(3.4%)部分熔融作用的产物,岩浆演化过程经历了以橄榄石为主的分馏作用。基性脉岩主要包括辉长岩、辉绿岩(主要分布在鲁西地区)和煌斑岩(以斜闪煌斑岩为主,同时含部分拉辉煌斑岩和角闪煌斑岩)(主要分布在鲁东地区),都为富集岩石圈地慢部分熔融的产物。三类岩石在侵位结晶过程都不存在明显的地壳混染。2、火山岩、碱性超基性脉岩和基性脉岩(除少数外)都形成于大陆板内拉张环境。3、富集地慢源区(EMI)的产生是俯冲并熔融的扬子下地壳物质进入华北岩石圈地慢并与之相互交代作用形成的。4、研究区中生代基性脉岩K-Ar年龄分布范围为72.2±1.70Ma~204.2±5.4Ma,且基本上在90~140Ma之间变化。综合碱性超基性脉岩和已知的青山组的火山岩、基性脉岩年龄数据,认为山东地区中生代地壳拉张至少存在四次:即约80Ma、100Ma、120Ma和 140Ma。但鲁东地区在地壳拉张方面可能存在着与鲁西地区不同的制约因素:即鲁东地区存在拆沉作用和可能存在地慢柱的影响,而鲁西地区可能受到了郊庐断裂的左行走滑剪切和拉张活动的影响。5、胶北地区煌斑岩为钙碱性系列,且金含量普遍较高(平均28ppb),该研究对胶北地区的找矿勘探工作具有一定意义。
Resumo:
Liquid segregation phenomena have been found and explained in the F(Li)-rich granites in south China by Wang Linakui et al. (1979; 1983). A number of experimental investigations into the liquid immiscibilities in the granites systems have been carried out (Anfilogov et al., 1983; Glyuk et al., 1971; Glyuk et al., 1973a; 1973b; kovalenko, 1978; Wang Liangkui et al., 1987). Nevertheless, the detailed scenarios of the liquid immiscibilities in the granitic magmas are much less understood. This experimental study is amide to get access to this problem. Starting materials are biotite granite +LiF(3-10%)+NaF(3-10%)+H_2O(30%). The experimental results have shown that the liquid immiscibilities of melts of different compositions occur at 1 kbar and 840 ℃ when 5wt% (LiF + NaF) are added to the granite samples. three kinds of glasses indicating of three types of coexisting immiscible melts have been observed: light blue matrix glass, melanocratic glass balls and leucocratic glass balls. It is interesting that we have observed various kinds of textures as follows: spherulitic texture, droplets, flow bands, swirls. All these textures can be comparable to those in the natural granitic bodies. Electron microprobe data suggest that these different kinds of glasses are of different chemical compositions respectively; matrix glasses are F-poor silicate melts; melanocratic balls correspond to F-rich silicate melts; and leucocratic balls are the melts consisting mainly of fluorides. Raman spectrometric data have indicated that different glasses have different melt structures. TFM Diagrams at 1000 * 10~5 Pa have been plotted, in which two miscible gaps are found. One of the two gaps corresponds to the immiscibility between F - poor silicate melt and F-rich silicate melt, another to that between the silicate melt and fluoride melt. The experiments at different pressures have suggested that the decreases in pressures are favorable to the liquid immiscibility. Several reversal experiments have indicated that the equilibria in different runs have been achieved. We have applied the experimental results to explain the field evidence of immiscibilities in some of granites associated with W-Sn-Nb-Ta mineralization. These field phenomena include flow structure, globular structures,mineralized globular patche and glass inclusions in topaz. We believe that the liquid immiscibility (liquid segregation) is a possible way of generation of F(Li)-rich granites. During the evolution of the granitic magmas, the contents of Li, F, H_2O and ore-forming elements in the magmas become higher and higher. The granites formed in the extensional tectonic settings commonly bear higher abundences of the above-mentioned elements. the pressures of the granitic magmas are relatively lower during the processes of their emplacements and cooling. The late-staged magmas will produce liquid immiscibilities, leading to the production of several coexisting immiscible melts with different chemical compositions. The flow of immiscible consisting magmas will produce F(Li)-rich granites. It is also considered that liquid immiscibilities are of great significance in the production of rare metal granites. The ore-forming processes and magmatic crystallization and metasomatic processes can be occur at the same time. The mineralisations of rare metals are related to both magmatic and hydrothermal processes.