132 resultados para Atmospheric circulation
Resumo:
[ 1] Intraseasonal variability of Indian Ocean sea surface temperature (SST) during boreal winter is investigated by analyzing available data and a suite of solutions to an ocean general circulation model for 1998 - 2004. This period covers the QuikSCAT and Tropical Rainfall Measuring Mission (TRMM) observations. Impacts of the 30 - 90 day and 10 - 30 day atmospheric intraseasonal oscillations (ISOs) are examined separately, with the former dominated by the Madden-Julian Oscillation (MJO) and the latter dominated by convectively coupled Rossby and Kelvin waves. The maximum variation of intraseasonal SST occurs at 10 degrees S - 2 degrees S in the wintertime Intertropical Convergence Zone (ITCZ), where the mixed layer is thin and intraseasonal wind speed reaches its maximum. The observed maximum warming ( cooling) averaged over ( 60 degrees E - 85 degrees E, 10 degrees S - 3 degrees S) is 1.13 degrees C ( - 0.97 degrees C) for the period of interest, with a standard deviation of 0.39 degrees C in winter. This SST change is forced predominantly by the MJO. While the MJO causes a basin-wide cooling ( warming) in the ITCZ region, submonthly ISOs cause a more complex SST structure that propagates southwestward in the western-central basin and southeastward in the eastern ocean. On both the MJO and submonthly timescales, winds are the deterministic factor for the SST variability. Short-wave radiation generally plays a secondary role, and effects of precipitation are negligible. The dominant role of winds results roughly equally from wind speed and stress forcing. Wind speed affects SST by altering turbulent heat fluxes and entrainment cooling. Wind stress affects SST via several local and remote oceanic processes.
Resumo:
Based on the Navier-Stokes equation, an equation describing the Langmuir circulation is derived by a perturbation method when the influences of Coriolis force and buoyancy force are both considered. The approach used in the analysis is similar to the works carried out by Craik and Leibovich [J. Fluid Mech. 73 (1976) 401], Leibovich [J. Fluid Mech. 79 (1977) 715] and Huang [J. Fluid Mech. 91 (1979) 191]. Potential applications of the equation proposed are discussed in the area of Antarctic circumpolar current.
Resumo:
Ocean color and sea surface temperature data from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite are used to study the cross-shelf circulation and transport of suspended sediments in the Yellow and the East China Seas. The ocean color images show a significant turbid water plume extending in the southeast direction from the Subei coasts of China to the shelf edge south of Cheju during fall-winter, suggesting significant cross-shelf currents in the Yellow Sea/East China Sea in winter. The currents transport suspended sediments from the area of the old Huanghe mouth into the Okinawa Trough. Part of the turbid plume joins the Yellow Sea Warm Current to enter the Yellow Sea trough in winter. The satellite images suggest that the time scales of cross-shelf transport and surface-to-subsurface descending of the suspended sediments are a few weeks. The turbid plume grows in fall, reaches its maximum expansion and intensity in winter-spring, and subsides in late spring. In summer, the plume becomes coastally trapped. Substantial interannual variations of the intensity and coverage of the turbid plume are indicated by the observations. In comparison, the Changjiang Diluted Water in summer only transports a small amount of the Changjiang suspended sediment to the outer shelf south of Cheju, which does not enter the Yellow Sea owing to the weak intrusion of the Yellow Sea Warm Current in summer. The dynamics of the cross-shelf circulation in the Yellow Sea in winter are hypothesized to be associated with (1) the convergence of the Yellow Sea Coastal Current and the Taiwan Warm Current off the Changjiang mouth and (2) the time-dependent forcing of the northerly wind bursts that drives the intrusion of the Yellow Sea Warm Current. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyo, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.
Resumo:
The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.
Resumo:
The basic features of climatology and interannual variations of tropical Pacific and Indian Oceans were analyzed using a coupled general circulation model (CGCM), which was constituted with an intermediate 2.5-layer ocean model and atmosphere model ECHAM4. The CGCM well captures the spatial and temporal structure of the Pacific El Nino-Southern Oscillation (ENSO) and the variability features in the tropical Indian Ocean. The influence of Pacific air-sea coupled process on the Indian Ocean variability was investigated carefully by conducting numerical experiments. Results show that the occurrence frequency of positive/negative Indian Ocean Dipole (IOD) event will decrease/increase with the presence/absence of the coupled process in the Pacific Ocean. Further analysis demonstrated that the air-sea coupled process in the Pacific Ocean affects the IOD variability mainly by influencing the zonal gradient of thermocline via modulating the background sea surface wind.
Resumo:
11-year satellite altimeter sea surface height (SSH) anomaly data from January 1993 to December 2003 are used to present the dominant spatial patterns and temporal variations of the South China Sea (SCS) surface circulation through Empirical Orthogonal Function (EOF) analysis. The first three EOF modes show the obvious seasonal variations of SSH in the SCS. EOF mode one is generally characterized by a basin-wide circulation. Mode two describes the double-cell basin scale circulation structure. The two cells were located off west of the Luzon Island and southeast of Vietnam, respectively. EOF mode three presents the mesoscale eddy structure in the western SCS, which develops into a strong cyclonic eddy rapidly from July to September. EOF mode one and mode three are also embedded with interannual signals, indicating that the SCS surface circulation variation is influenced by El Nino events prominently. The strong El Nino of 1997/98 obviously changed the SCS circulation structure. This study also shows that there existed a series of mesoscale eddies in the western SCS, and their temporal variation indicates intra-seasonal and interannual signals.
Resumo:
An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.
Resumo:
利用ERA40逐日再分析资料、NCEP/NCAR2逐日再分析资料、中国740个测站日降水资料、上海台风研究所提供的西太平洋热带气旋资料、Kaplan等重建的月平均SSTA资料、NOAA逐日长波辐射(OLR)等资料,应用离散功率谱分析、带通滤波、EOF分析等统计方法,研究了东亚夏季风(EASM)的移动特征、东亚地区季节内振荡(ISO)的基本特征、季节内振荡对东亚夏季风活动的影响、季节内振荡对东亚夏季风异常活动的影响机理。主要结论如下: (1)综合动力和热力因素定义了可动态描述东亚夏季风移动和强度的指数,并利用该指数研究了东亚夏季风的爆发和移动的季节内变化及其年际和年代际变化特征。研究发现,气候平均东亚夏季风前沿分别在28候、33候、36候、38候、40候、44候出现了明显的跳跃。东亚夏季风活动具有显著的年际变率,主要由于季风前沿在某些区域异常停滞和突然跨越北跳或南撤引起,造成中国东部旱涝灾害频繁发生。东亚夏季风的活动具有明显的年代际变化,在1965年、1980年、1994年发生了突变,造成中国东部降水由“南旱北涝”向“南涝北旱”的转变。 (2)东亚季风区季节内变化具有10~25d和30~60d两个波段的季节内振荡周期,以30-60d为主。存在三个主要低频模态,第一模态主要表征了EASM在长江中下游和华北地区活动期间的低频形势;第二模态印度洋-菲律宾由低频气旋式环流控制,主要表现了ISO在EASM爆发期间的低频形势;第三模态主要出现在EASM在华南和淮河活动期间的低频形势。第一模态和第三模态是代表东亚夏季风活动异常的主要低频形势。 (3)热带和副热带地区ISO总是沿垂直切变风的垂直方向传播。因此,在南海-菲律宾东北风垂直切变和副热带西太平洋北风垂直切变下,大气热源激发菲律宾附近交替出现的低频气旋和低频反气旋不断向西北传播,副热带西太平洋ISO以向西传播为主。中高纬度地区,乌拉尔山附近ISO以向东、向南移动或局地振荡为主;北太平洋中部ISO在某些情况下向南、向西传播。 (4)季风爆发期,伴随着热带东印度洋到菲律宾一系列低频气旋和低频反气旋, 冷空气向南输送,10~25天和30~60天季节内振荡低频气旋同时传入南海加快了南海夏季风的爆发。在气候态下,ISO活动表现的欧亚- 太平洋(EAP)以及太平洋-北美(PNA)低频波列分布特征(本文提出的EAP和PNA低频波列与传统意义上的二维定点相关得到的波列不同)。这种低频分布形式使得欧亚和太平洋中高纬度的槽、脊及太平洋副热带高压稳定、加强,东亚地区的低频波列则成为热带和中高纬度ISO相互作用影响东亚夏季风活动的纽带。不同的阶段表现不同的低频模态,30~60d低频模态的转变加快了EASM推进过程中跳跃性;30-60d低频模态的维持使得EASM前沿相对停滞。 (5)30-60d滤波场,菲律宾海域交替出现的低频气旋和低频反气旋不断向西北传播到南海-西太平洋一带。当南海-西太平洋地区低频气旋活跃时,季风槽加强、东伸,季风槽内热带气旋(TC)频数增加;当南海-西太平洋低频反气旋活跃时,季风槽减弱、西退,TC处于间歇期,生成位置不集中。 (6)在El Nino态下,大气季节内振荡偏弱,北传特征不明显,但ISO由中高纬度北太平洋中部向南和副热带西太平洋向西的传播特征显著,东亚地区ISO活动以第三模态为主,EASM集中停滞在华南和淮河流域,常伴随着持续性区域暴雨的出现,易造成华南和江淮流域洪涝灾害,长江和华北持续干旱。在La Nina态下,大气季节内振荡活跃,且具有明显的向北传播特征,PNA低频波列显著,东亚地区ISO活动以第一模态单峰为主;EASM主要停滞在长江中下游和华北地区,这些地区出现异常持续强降水,华南和淮河流域多干旱;在El Nino态向La Nina态转换期,ISO活动以第一模态双峰为主,长江中下游常常出现二度梅。
Resumo:
温度跃层是反映海洋温度场的重要物理特性指标,对水下通讯、潜艇活动及渔业养殖、捕捞等有重要影响。本文利用中国科学院海洋研究所“中国海洋科学数据库”在中国近海及西北太平洋(110ºE-140ºE,10ºN-40ºN)的多年历史资料(1930-2002年,510143站次),基于一种改进的温跃层判定方法,分析了该海域温跃层特征量的时空分布状况。同时利用Princeton Ocean Model(POM),对中国近海,特别是东南沿海的水文结构进行了模拟,研究了海洋水文环境对逆温跃层的影响。最后根据历史海温观测资料,利用EOF分解统计技术,提出了一种适于我国近海及毗邻海域,基于现场有限层实测海温数据,快速重构海洋水温垂直结构的统计预报方法,以达到对现场温跃层的快速估计。 历史资料分析结果表明,受太阳辐射和风应力的影响,20°N以北研究海域,温跃层季节变化明显,夏季温跃层最浅、最强,冬季相反,温跃层厚度的相位明显滞后于其他变量,其在春季最薄、秋季最厚。12月份到翌年3月份,渤、黄及东海西岸,呈无跃层结构,西北太平洋部分海域从1月到3月份,也基本无跃层结构。在黄海西和东岸以及台湾海峡附近的浅滩海域,由于风力搅拌和潮混合作用,温跃层出现概率常年较低。夏季,海水层化现象在近海陆架海域得到了加强,陆架海域温跃层强度季节性变化幅度(0.31°C/m)明显大于深水区(约0.05°C/m),而前者温跃层深度和厚度的季节性变化幅度小于后者。20°N以南研究海域,温跃层季节变化不明显。逆温跃层主要出现在冬、春季节(10月-翌年5月)。受长江冲淡水和台湾暖流的影响,东南沿海区域逆温跃层持续时间最长,出现概率最大,而在山东半岛北及东沿岸、朝鲜半岛西及北岸,逆温跃层消长过程似乎和黄海暖流有关。多温跃层结构常年出现于北赤道流及对马暖流区。在黑潮入侵黄、东、南海的区域,多温跃层呈现明显不同的季节变化。在黄海中部,春季多温跃层发生概率高于夏季和秋季,在东海西部,多跃层主要出现在夏季,在南海北部,冬季和春季多温跃层发生概率大于夏季和秋季。这些变化可能主要受海表面温度变化和风力驱动的表层流的影响。 利用Princeton Ocean Model(POM),对中国东南沿海逆温跃层结构进行了模拟,模拟结果显示,长江冲淡水的季节性变化以及夏季转向与实际结果符合较好,基本再现了渤、黄、东海海域主要的环流、温盐场以及逆温跃层的分布特征和季节变化。通过数值实验发现,若无长江、黄河淡水输入,则在整个研究海域基本无逆温跃层出现,因此陆源淡水可能是河口附近逆温跃层出现的基本因素之一。长江以及暖流(黑潮和台湾暖流)流量的增加,均可在不同程度上使逆温跃层出现概率及强度、深度和厚度增加,且暖流的影响更加明显。长江对东南沿海逆温跃层的出现,特别是秋季到冬季初期,有明显的影响,使长江口海域逆温跃层位置偏向东南。暖流对于中国东南沿海的逆温跃层结构,特别是初春时期,有较大影响,使长江口海域的逆温跃层位置向东北偏移。 通过对温跃层长期变化分析得出,黄海冷水团区域,夏季温跃层强度存在3.8年左右的年际变化及18.9年左右的年代际变化,此变化可能主要表现为对当年夏季和前冬东亚地区大气气温的热力响应。东海冷涡区域,夏季温跃层强度存在3.7年的年际变化,在El Nino年为正的强度异常,其可能主要受局地气旋式大气环流变异所影响。谱分析同时表明,该海域夏季温跃层强度还存在33.2年的年代际变化,上世纪70年代中期,温跃层强度由弱转强,而此变化可能与黑潮流量的年代际变化有关。 海洋水温垂直结构的统计预报结果显示,EOF分解的前四个主分量即能够解释原空间点温度距平总方差的95%以上,以海洋表层附近观测资料求解的特征系数推断温度垂直结构分布的结果最稳定。利用东海陆架区、南海深水区和台湾周边海域三个不同区域的实测CTD样本廓线资料,对重构模型的检验结果表明,重构与实测廓线的相关程度超过95%的置信水平。三个区重构与实测温度廓线值的平均误差分别为0.69℃,0.52℃,1.18℃,平均重构廓线误差小于平均气候偏差,统计模式可以很好的估算温度廓线垂直结构。东海陆架海区温度垂直重构廓线与CTD观测廓线获得的温跃层结果对比表明,重构温跃层上界、下界深度和强度的平均绝对误差分别为1.51m、1.36m和0.17℃/m,它们的平均相对误差分别为24.7%、8.9%和22.6%,虽然温跃层深度和强度的平均相对误差较大,但其绝对误差量值较小。而在南海海区,模型重构温跃层上界、下界和强度的平均绝对预报误差分别为4.1m、27.7m和0.007℃/m,它们的平均相对误差分别为16.1%、16.8%和9.5%,重构温跃层各特征值的平均相对误差都在20%以内。虽然南海区温跃层下界深度平均绝对预报误差较大,但相对于温跃层下界深度的空间尺度变化而言(平均温跃层下界深度为168m),平均相对误差仅为16.8%。因此说模型重构的温度廓线可以达到对我国陆架海域、深水区温跃层的较好估算。 基于对历史水文温度廓线观测资料的分析及自主温跃层统计预报模型,研制了实时可利用微机简单、快捷地进行温跃层估算及查询的可视化系统,这是迄今进行大范围海域温跃层统计与实时预报研究的较系统成果。
Resumo:
The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinear numerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closure model based on the reasonable model output of the M-2 tide and density residual currents. In the numerical experiments, upwelling motion appears around all the fronts with different velocity structures, accounting for surface cold water around the fronts. The experiments also suggest that the location and formation of fronts are closely related to topography and tidal mixing, as is the velocity structure around the front.
Resumo:
Carbon cycle is connected with the most important environmental issue of Global Change. As one of the major carbon reservoirs, oceans play an important part in the carbon cycle. In recent years, iron seems to give us a good news that oceanic iron fertilization could stimulate biological productivity as CO2 sink of human-produced CO2. Oceanic iron fertilization experiments have verified that adding iron into high nutrient low chlorophyll (HNLC) seawaters can increase phytoplankton production and export organic carbon, and hence increase carbon sink of anthropogenic CO2, to reduce global warming. In sixty days, the export organic carbon could reach 10 000 times for adding iron by model prediction and in situ experiment, i.e. the atmospheric CO2 uptake and inorganic carbon drawdown in upper seawaters also have the same magnitude. Therefore, oceanic iron fertilization is one of the strategies for increasing carbon sink of anthropogenic CO2. The paper is focused on the iron fertilization, especially in situ ocean iron experiments in order that the future research is more efficient.
Resumo:
Susceptibility to stress corrosion cracking of X56 steel and its relationship with hydrogen permeation behaviour in atmospheric environment containing H2S was investigated by hydrogen permeation tests at a slow strain rate. The results show that: the fracture strain decreases with the decrease of strain rate under the same experimental conditions; the fracture strain also decreases with the increase of H2S concentration under the same strain rate, and the increased concentration of H2S has no significant effect on the hydrogen permeation in the first wet, etc. dry cycle, however has lead to increased hydrogen permeation in the later cycles. The SEM images of the fractured surfaces show clear evidences of enhanced stress corrosion cracking susceptibility by H2S.
Resumo:
Hydrogen entry and permeation into iron were measured by an electrochemical method during atmospheric corrosion reaction. The hydrogen permeation was enhanced on passive films because the hydrogen adsorption increased by the hydrogen evolution mechanism which is different from that on a bear iron surface. The permeation rate during a wet and dry corrosion cycle showed a maximum in the drying process depending upon the surface pH and the corrosion potential. The pollutant such as Na2SO3 which decreases the pH and the corrosion potential causes an increase in the permeation rate. The mechanism of the change in the permeation rate during the wet and dry cycles is explained by the polarization diagram of the electrode covered by thin water layer. (c) 2005 Elsevier Ltd. All rights reserved.