100 resultados para Aromatic Di- And Triamines
Resumo:
This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (I PAH) pound in the surface sediments of China's marginal seas. BC content ranges from < 0.10 to 2.45 mg/g dw (grams dry weight) in the sediments studied, and varied among the different coastal regions. The Bohai Bay sediments had the highest BC contents (average 2.18 mg/g dw), which comprises a significant fraction (27%-41%) of the total organic carbon (TOC) preserved in the sediments. In comparison, BC in the surface sediments of the North Yellow Sea, Jiaozhou Bay, East China Sea and the South China Sea is less abundant and accounted for an average of 6%, 8%, 14% and 5%, respectively, of the sedimentary organic carbon pool. The concentration of I PAH pound in the surface sediments ranges from 41 to 3 667 ng/g dw and showed large spatial variations among the sampling sites of different costal regions. The Bohai Bay has the highest I PAH pound values, ranging from 79 to 3 667 ng/g dw. This reflects the high anthropogenically contaminated nature of the sediments in the bay. BC is positively correlated to TOC but a strong correlation is not found between BC and I PAH pound in the surface sediments studied, suggesting that BC and PAHs preserved in the sediments are derived from different sources and controlled by different biogeochemical processes. Our study suggests that the abundance of BC preserved in the sediments could represent a significant sink pool of carbon cycling in China's marginal seas.
Resumo:
2-(2-Phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA) and 2-(9-acridone)-acetic acid (AAA), two novel precolumn fluorescent derivatization reagents, have been developed and compared for analysis of primary aromatic amines by high performance liquid chromatographic fluorescence detection coupled with online mass spectrometric identification. PPIA and AAA react rapidly and smoothly with the aromatic amines on the basis of a condensation reaction using 1-ethyl-3-(3dimethylaminopropyl)-carbodiimide (EDC) as dehydrating catalyst to form stable derivatives with emission wavelengths at 380 and 440 nm, respectively. Taking six primary aromatic amines (aniline, 2-methylaniline, 2-methoxyaniline, 4-methylaniline, 4-chloroaniline, and 4-bromoaniline) as testing compounds, derivatization conditions such as coupling reagent, basic catalyst, reaction temperature and time, reaction solvent, and fluorescent labeling reagent concentration have also been investigated. With the better PPIA method, chromatographic separation of derivatized aromatic amines exhibited a good baseline resolution on an RP column. At the same time, by online mass spectrometric identification with atmospheric pressure chemical ionization (APCI) source in positive ion mode, the PPIA-labeled derivatives were characterized by easy-to-interpret mass spectra due to the prominent protonated molecular ion m/z [M + H](+) and specific fragment ions (MS/MS) m/z 335 and 295. The linear range is 24.41 fmol-200.0 pmol with correlation coefficients in the range of 0.9996-0.9999, and detection limits of PPIA-labeled aromatic amines are 0.12-0.21 nmol/L (S/N = 3). Method repeatability, precision, and recovery were evaluated and the results were excellent for the efficient HPLC analysis. The most important argument, however, was the high sensitivity and ease-of-handling of the PPIA method. Preliminary experiments with wastewater samples collected from the waterspout of a paper mill and its nearby soil where pollution with aromatic amines may be expected show that the method is highly validated with little interference in the chromatogram.
Resumo:
Naphtha catalytic cracking were carried out at 650 degrees C over modified ZSM-5. Light olefins and BTX could be obtained over the catalysts. The products showed variable distribution with different catalyst modification. Some modification, such as Fe, Cu and La favored the BTX generation and P and Mg modification favored the light olefins production. In N-2 stream cracking catalyzed by LaZSM-5, more than 50% naphtha feed were converted to BTX, while in steam cracking, with an improved modified catalyst, P, La/ZSM-5, naphtha can be converted to light olefins with high activity and long-term stability.