93 resultados para Anatomy. RNA Sequencing. Catalase. Ascorbate peroxidase. Superoxide dismutase. Saccharum spp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study examined the influence of air exposure at different temperatures: a common perturbation associated with aquaculture handling practices, on immune responses in zhikong scallop Chlamys farreri. Scallops were exposed to air for 2 h, 6 h, 12 h and 24 h at 5 degrees C, 17 degrees C and 25 degrees C respectively. Thereafter, a recovery period of 24 h at 17 degrees C was applied. Haemocyte mortality, phagocytosis and reactive oxygen species (ROS) production of haemocytes, acid phosphatase (ACP) and superoxide dismutase (SOD) activity in haemocyte lysates were chosen as immumomarkers of anoxic stress. The results showed that an increase of haemocyte mortality and a decrease of phagocytosis and ACP activity were observed after 2 h of air exposure for all temperatures tested. Moreover, a significant increase of ROS production occurred following 2 h of air exposure at 25 degrees C and 24 h of air exposure at 17 degrees C. Significant differences were also observed in haemocyte mortality, percentage of phagocytic cells and ACP and SOD activity depending on the temperature of air exposure. Finally, after 24 h of recovery at 17 degrees C, percentage of phagocytic haemocytes and ACP activity did not return to initial values. ROS production was significantly higher than before the recovery period and initial values for scallops subjected to air exposure at 5 degrees C. In our study, scallops showed a relative low anoxia tolerance under a high temperature. All the scallops air exposed to 25 degrees C died after the 6 h sampling. In conclusion, air exposure associated to aquaculture practices was demonstrated to strongly affect functional immune activities of scallop haemocytes, and high temperature air exposure caused reduced survival of scallops. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both in-field chemical investigation and in the laboratory toxic tests were carried out to systematically understand the pollution status of cadmium (Cd) and zinc (Zn) in Bohai Bay. Samples collected from surface seawater were determined to describe the distributions of Cd and Zn in Bohai Bay. The average values in our study of Cd and Zn were 0.15 mu g/L and 19.68 mu g/L, respectively. Both of them were lower than the first class limit of seawater quality standard in China. In the laboratory, antioxidant enzymes [SOD (Cu/Zn-SOD, Mn-SOD), CAT], lipid peroxidation (MDA), phase I and phase II enzymes (CYP4501A and GST) were investigated in the bivalves Chlamys farreri exposed to Cd and Zn at the concentration levels of Bohai Bay seawater, which were obtained from our in-field investigation. The reduced SOD, CAT, and EROD (7-ethoxyresorufin-O-deethylase) activities (with the inhibitory rate of 16.8%, 31.5%, and 51.6%, respectively) in Cd treatment were observed and resulted in obvious lipid peroxidation damage. However, treatment of Zn showed elevations in SOD and GST by 13.3% and 29.9%, respectively, and with no influence on lipid peroxidation. In summary, seawater quality in Bohai Bay seawater was ranked as good in general, but it seemed that Cd might possess a potential environmental risk by effecting pro-oxidant/antioxidant balance and phase I detoxification in C. farreri.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survival, growth and immune response of the scallop, Chlamys farreri, cultured in lantern nets at five different depths (2, 5, 10, 15, and 20 m below the sea surface) were studied in Haizhou Bay during the hot season (summer and autumn) of 2007. Survival and growth rates were quantified bimonthly. Immune activities in hemolymph (superoxide dismutase (SOD) and acid phosphatase (ACP)) were measured to evaluate the health of scallops at the end of the study. Environmental parameters at the five depths were also monitored during the experiment. Mortalities mainly occurred during summer. Survival of scallops suspended at 15 m (78.0%) and 20 m (86.7%) was significantly higher than at 2 m (62.9%), 5 m (60.8%) or 10 m (66.8%) at the end of the study. Mean shell height grew significantly faster at 10 m (205.0 mu m/d) and 20 m (236.9 mu m/d) than at 2, 5 or 15 m in summer (July 9 to September 1); however, shell growth rate at 20 m was significantly lower than at the other four depths in autumn (September 2 to November 6). In contrast to summer, scallops at 5 m grew faster (262.9 mu m/d) during autumn. The growth of soft tissue at different depths showed a similar trend to the shell. Growth rates of shell height and soft tissue were faster in autumn than in summer, with the exception of shell height at 20 m. SOD activity of scallops increased with depth, and ACP activity was significantly higher at 15 and 20 m than at other depths, which suggests that scallops were healthier near the bottom. Factors explaining the depth-related mortality and growth of scallops are also discussed. We conclude that the mass mortality of scallop, C. farreri, during summer can be prevented by moving the culture area to deeper water and yield can be maximized by suspending the scallops in deep water during summer and then transferring them to shallow water in autumn.