157 resultados para Amidation reactions
Resumo:
A novel method to study electron-transfer (ET) reactions between ferrocene in 1,2-dichloroethane (DCE) and a redox couple of K3Fe(CN)(6) and K4Fe(CN)(6) in water using scanning electrochemical microscopy (SECM) with a three-electrode setup is reported. In this work, a water droplet that adheres to the Surface of a platinum disk electrode is immersed in a DCE solution. The aqueous redox couple serves both as a reference electrode on the platinum disk and as an electron donor/acceptor at the polarized liquid/liquid inter-face. With the present experimental approach, the liquid/liquid interface can be polarized externally, while the electron-transfer reactions between the two phases can be monitored independently by SECM. The apparent heterogeneous rate constants for the ET reactions were obtained by fitting the experimental approach curves to the theoretical values. These rate constants obey the Butler-Volmer theory i.e., them, are found to be potential dependent.
Resumo:
Room-temperature ionic liquids are good solvents for a wide of organic, inorganic and organometallic compounds. Typically consisting of nitrogen-containing organic cations and inorganic anions, they are easy to recycle, nonflammable, and have no detectable vapor pressure. More recently, ionic liquids have been found to be excellent solvents for a number of chemical reactions, e. g. hydrogenation, alkylation, epoxidation, Heck-vinylation, Suzuki cross-coupling reactions and enzyme catalyzed organic reactions. This paper focuses on the recent development of using ionic liquids as solvents for transition metal and enzyme catalyzed reactions.
Resumo:
The new topological indices A(x1)-A(x3) suggested in our laboratories were applied to the study of structure-property relationships between color reagents and their color reactions with yttrium. The topological indices of twenty asymmetrical phosphone bisazo derivatives of chromotropic acid were calculated. The work shows that QSPR can be used as a novel aid to predict the molar absorptivities of color reactions and in the long term to be helpful tool in-color reagent design. Multiple regression analysis and neural network were employed simultaneously in this study. The results demonstrated the feasibility and the effectiveness of the method.
Resumo:
Gas-phase hydrogen-deuterium (H/D) exchange reactions involving four isomeric cyclopropane derivatives were investigated under chemical ionization (CI) conditions, using D2O and CD3OD as reagent gases. There are abundant ions at [M + 1](+), [M + 2](+) and [M + 3](+) in the D2O and CD3OD positive-ion CI mass spectra of the two isomer pairs 1, 2 and 3, 4, Their CI mass spectra are identical with each pair, and so are the collision-induced dissociation (CID) spectra of ions [M + 1](+), [M + 2](+) and [M + 3](+) of each of the two isomer pairs. The CID spectra of [M + 1](+) ions indicate that they have common D/H exchange reactions within each pair, which take place between molecular ions and deuterium-labeling reagents to form the [M - H + D](+) ions. Those of their [M + 2](+) ions show that they have common D/H exchange reactions within each pair, which form the [M-d1 + H](+) ions. Those of their [M + 3](+) ions show that they have common D/H exchange reactions within each pair, which take place between the [M-d1] and deuterium-labeling reagents to produce [Md-2 + H](+) for the isomer pair 1, 2 and [M-d1 + D](+) for the Isomer pair 3, 4. The number and position, and active order of the active hydrogen atoms of the isomer pairs 1, 2 and 3, 4 were determined. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
The gas-phase ion-molecule reactions of C-60 with the plasma generated from methyl acrylate under self-chemical ionization conditions were studied by use of a triple-quadrupole mass spectrometer. The adduct cation [C60C3H3O](+) and protonated molecular ion [C60H](+) were observed as the major product ions. The former adduct ion is formed by electrophilic reaction of C-60 with the ion [CH2=CHCO](+), a main fragment ion resulting from the methyl acrylate molecular ion [CH2=CHCOOCH3](+) through alpha cleavage. The latter ion is generated by proton transfer from protonated methyl acrylate to C-60. Semi-empirical quantum chemical calculations have been performed for the eight possible isomers of [C60C3H3O](+) at the Hartree-Fock level by use of the AMI method. The results show three types of cycloadducts as the most stable structures among the possible isomers.
Resumo:
All structural geometries of intermediates, transition states and product are, optimized at HF/ LANL2DZ level under the effective core potential approximation. The potential energy profile for some elementary reactions of hydroformylation catalyzed by Co-2(CO)(6)(PH3)(2), consisting of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination, are calculated, The transition states are further confirmed by having one and only one imaginary vibrational frequency, The activation energies of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination are 54, 02, 134, 02 and 43. 44 kJ/mol, respectively.
Resumo:
The dissociation routes of the adduct ions [M+CH3CO](+) formed by ion-molecule reaction of isomeric phenylenediamines with acetyl ion from acetone under chemical ionization condition were investigated by using collision-induced dissociation (CID) technique performed at ion kinetic energies of 40eV. The adduct ions are intermediate ion-neutral complexes.
Resumo:
The gas-phase ion-molecule reactions of C-60 with the methoxymethyl ion [CH3O=CH2](+) and the 1-hydroxyethyl ion [CH3CH=OH](+) generated under the self-chemical-ionization (self-CI) conditions of alkyl methyl ethers and primary alcohols were studied in the ion source of a mass spectrometer. The adduct ions [C60C2H5O](+) and protonated molecules [C60H](+) were observed as the major products of C-60 with the plasma of alkyl methyl ethers. On the contrary, the reactions of C-60 With the plasmas of primary alcohols produced few corresponding adduct ions. The AM1 semiempirical molecular orbital calculations were carried out on 14 possible structures. The calculated results showed that the most stable structure among the possible isomers of [C60C2H5O](+) is the [3+2] cycloadduct. According to experimental and theoretical results, the pathway for the formation of the adduct was presented.
Resumo:
Ultrasonic absorption coefficients were measured for butylamine in heavy water (D2O) in the frequency range from 0.8 to 220 MHz and at concentrations from 0.0278 to 2.5170 mol dm(-3) at 25 degrees C; two kinds of relaxation processes were observed. One was found in relatively dilute solutions (up to 0.5 mol dm(-3)), which was attributed to the hydrolysis of butylamine. In order to compare the results, absorption measurements were also carried out in light water (H2O). The rate and thermodynamic parameters were determined from the concentration dependence of the relaxation frequency and the maximum absorption per wavelength. The isotope effects on the diffusion-controlled reaction were estimated and the stability of the intermediate of the hydrolysis was considered while comparing it with the results for propylamine in H2O and D2O. Another relaxation process was observed at concentrations greater than 1 mol dm(-3) in D2O. In order to examine the solution characteristics, proton NMR measurements for butylamine were also carried out in D2O. The chemical shifts for the gamma- and delta-proton in butylamine molecule indicate the existence of an aggregate. From profiles of the concentration dependence of the relaxation frequency and the maximum absorption per wavelength of sound absorption, the source of the relaxation was attributed to an association-dissociation reaction, perhaps, associated with a hydrophobic interaction. The aggregation number, the forward and reverse rate constants and the standard volume change of the reaction were determined. It was concluded from a comparison with the results in H2O that the hydrophobic interaction of butylamine in D2O is stronger than that in H2O. Also, the isotope effect on this reaction was interpreted in terms of the solvent structure.
Resumo:
Gas-phase ion-molecule reactions of buckminsterfullerene (C-60) with the ion systems generated from the self-chemical-ionization of alkyl methyl ethers(CH3OCnH2n+1, n =2 , 3, 4) were studied in the ion source of a mass spectrometer. The adduct cation [C60C2H5O](+) and protonated molecular ion [C60H](+) were observed as the major products, The former was produced by the reactions.of C-60 with the methoxymethyl ion [CH3O = CH2](+) , the latter corresponded to the proton transfer reactions from the protonated alkyl methyl ethers to C60 It is suggested that the [3+2] cycloadduct is the most favorable structure among the probable isomers with special chemical properties, Our investigation provides the guidance for the synthesis of this compound in condensed phase.
Resumo:
Gas-phase ion-molecule reactions of buckminsterfullerene (C-60) with the ion systems generated from the self-chemical ionization of alkyl methyl ethers (CH3OR, R = n-C2H5, n-C3H7, n-C4H9) were studied in the ion source of a mass spectrometer. The adduct cation [C60C2H5O](+) and protonated molecule [C60H](+) were observed as the major products. The former adduct ion was produced by the reactions of C-60 with the methoxymethyl ion [CH3OCH2](+), and the latter resulted from the proton transfer reactions from protonated alkyl methyl ethers to C-60 It is suggested that the [3+2] cycloadduct to a 6-6 bond of C-60 (a C-C bond common to two annulated six-membered rings) is the most favorable structure among the probable isomers of [C60C2H5O](+). (C) 1998 John Wiley & Sons, Ltd.
Resumo:
The electron impact mass spectrum (EIMS) of 3-phenyl-1-butyn-3-ol was reported in this paper. Collision-induced dissociation (CID) was used to study the gas phase ion structure of [C8H7](+) formed by the fragmentation of ionized 3-phenyl-1-butyn-3-ol, and that it has the same structure as m/z 103 ions generated by cinnamic acid and alpha-methylstyrene. Deuterium labelling, metastable ion (MI) and CID experimental results indicate the formation of m/z 103 ion resulting from molecular ion of 3-phenyl-1-butyn-3-ol, which is a stepwise procedure via twice proton transfers, rather than concerted process during the successive elimination of methyl radical and neutral carbon monoxide accompanying hydrogen transfer. Moreover, in order to rationalized these fragmentation processes, the bimolecular proton bound complex between benzyne and acetylene intermediate has been proposed.
Resumo:
Ion-molecule reactions of four isomeric cyclopropane derivatives were investigated under chemical ionization(CI) conditions, using methane, acetone and vinyl acetate as reagent gases, The methane positive-ion CI mass spectra of each of two isomer pairs 1,2 and 3,4 are identical, and so are the collision-induced dissociation (CTD) spectra of the protonated molecules of each of the two isomer pairs, The protonation reactions for the isomer pairs 1,2 and 3,4 occurred on the sites of the carboxyl groups and the R groups, respectively, Differences between isomers 1 and 2 are observed in their acetone (A) positive-ion CI mass spectra and in the CID spectra of their adduct ions ([M+H+A](+)), The adduct ions of compounds 2, 3 and 4 with protonated acetone and with protonated acetone dimer are observed in their CI mass spectra, However, only the adduct ions of compound 1 with protonated acetone appear in its CI mass spectrum, The protonated dimers of each of the four compounds are found in their vinyl acetate positive-ion CI mass spectra, and the CID spectra of these dimers for isomers 1 and 2 can also reflect their stereostructural difference. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Gas phase ion-molecular reactions of endohedral metallofullerenes with the self-chemical ionization ion system of vinyl acetate, benzene and acetone in the ion source of the mass spectrometer have been studied. Several derivatized endohedral metallofullerene cations [M@C-82-C2H3O](+), [M-2@C-80-C2H3O](+), [M@C-82-C6H6](+) and [M@C-82-CO-CH3](+) are observed as the major products. The experimental results indicate that endohedral metallofullerenes have active gas phase reactivities and can be efficiently derivatized by some small organic cations.