194 resultados para Alpha-subunit
Resumo:
We investigate the ground state properties of some superheavy nuclei, which may be synthesized in future experiments. Special emphases are placed on the alpha decay energies and half-lives. The alpha decay energies and half-lives from different theoretical models are compared and discussed comprehensively. Through these calculations and comparisons, the optimal superheavy elements to be synthesized in future experiments are proposed theoretically.
Resumo:
The a-decay half-lives of a set of superheavy nuclear isotope chain from Z = 105 to 120 have been analyzed systematically within the WKB method, and some nuclear structure features are found. The decay barriers have been determined in the quasi-molecular shape path within the Generalized Liquid Drop Model (GLDM) including the proximity effects between nucleons in a neck and the mass and charge asymmetry. The results are in reasonable agreement with the published experimental data for the alpha decay half-lives of isotopes of charge 112, 114, and 116, of the element 294118 and of some decay products. A comparison of present calculations with the results by the DDM3Y effective interaction and by the Viola-Seaborg Sobiczewski (VSS) formulae is also made. The experimental a decay half lives all stand in between the GLDM calculations and VSS formula results. This demonstrates the possibility of these models to provide reasonable estimates for the half-lives of nuclear decays by a emissions for the domain of SHN. The half-lives of these new nuclei are thus well tested from the reasonable consistence of the macroscopic, the microscopic, the empirical formulae and the experimental data. This also shows that the present data of SHN themselves are consistent. It could suggest that the present experimental claims on the existence of new elements Z = 110 similar to 118 are reliable. It is expected that greater deviations of a few SHN between the data and the model may be eliminated by further improvements on the precision of the measurements.
Resumo:
Single crystals of alpha-alumina were irradiated at room temperature with 1.157 (GeVFe)-Fe-56, 1.755 (GeVXe)-Xe-136 and 2.636 (GeVU)-U-238 ions to fluences range from 8.7 x 10(9) to 6 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet visible absorption measurements. The investigation reveals the presence of various color centers (F, F+, F-2(2+), F-2(+) and F-2 centers) appearing in the irradiated samples. It is found that the ratio of peak absorbance of F-2 to F centers increases with the increase of the atomic numbers of the incident ions from Fe, Xe to U ions, so do the absorbance ratio of F-2(2+) to F+ centers and of large defect cluster to F centers, indicating that larger defect clusters are preferred to be produced under heavier ion irradiation. Largest color center production cross-section was found for the U ion irradiation. The number density of single anion vacancy scales better with the energy deposition through processes of nuclear stopping, indicating that the nuclear energy loss processes determines the production of F-type defects in heavy ion irradiated alpha-alumina.
Resumo:
The alpha decay half-lives of the recently produced isotopes of the 112, 114, 116 and 118 nuclei and decay products have been calculated in the quasi-molecular shape path using the experimental Q(alpha) value and a Generalized Liquid Drop Model including the proximity effects between nucleons in the neck or the gap between the nascent fragments. Reasonable estimates are obtained for the observed alpha decay half-lives. The results are compared with calculations using the Density-Dependent M3Y effective interaction and the Viola-Seaborg-Sobiczewski formulae. Generalized Liquid Drop Model predictions are provided for the alpha decay half-lives of other superheavy nuclei using the Finite Range Droplet Model Q(alpha) and compared with the values derived from the VSS formulae.
Resumo:
The lifetimes of alpha decays of the recently produced isotopes of the elements 112, 114, 116 and the element (294)118 and of some decay products have been calculated theoretically within the Wentzel-Kramers-Brillouin approximation. The alpha decay barriers have been determined in the quasimolecular shape path within a generalized liquid drop model including the proximity effects between nuclei in a neck, the mass and charge asymmetry and the precise nuclear radius. These calculations provide reasonable estimated for the observed alpha decay lifetimes. The calculated results have been compared with the results of the density-dependent M3Y effective interaction and the experimental data. It is indicated that the theoretical foundation of the generalized liquid drop model is as good as that of the microscopic DDM3Y model, at least in the sense of predicting the T-1/2 values as long as one uses a correct alpha decay energy. The half lives of these new nuclei are well tested from the consistence of the macroscopic, the microscopic and the experimental data.
Resumo:
The properties of the nuclei belonging to the newly observed nuclei starting from (288)115 have been studied with the generalized liquid drop model connected with WKB approximation. The calculated results have been compared with the results of the DDM3Y theory and the experimental data. The half lives of this new alpha decay chain have been well tested from the consistence of the macroscopic, microscopic and the experimental data.
Resumo:
The medium effect of in-medium nucleon-nucleon cross section sigma(med)(NN) (alpha(m)) on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-48 and Ca-60 + Ca-48; Sn-112 + Sn-112 and Sn-124 + Sn-124 at beam energy region from 40 to 60 MeV/nucleon with isospin dependent quantum molecular dynamics. It is found that there is the obvious medium effect of sigma(med)(NN) (alpha(m)) on the isoscaling parameters alpha. The mechanism for the medium effect of sigma(med)(NN) (alpha(m)) on a is investigated.
Resumo:
Branching ratios and half-lives of alpha-decay to the ground-state rotational bands as well as the high-lying excited states of even-even nuclei have been calculated in the framework of the generalized liquid drop model (GLDM) and Royer's formula that we improved very recently. The calculation covers the isotopic chains from Ra to No in the mass regions 222 <= A <= 252 and 88 <= Z <= 102. The agreement between the calculated results and the experimental data indicates the reliability of investigating the properties of the unfavored alpha-decay with our method, especially the improved Royer's formula, which is very valuable for the analysis of experimental data. In addition, the dependence of half-lives on excitation energies of daughter nuclei has been investigated. It is shown that the influence on half-lives becomes stronger and stronger with the increase of the excitation energies.
Resumo:
To gain a better insight into alpha-decay fine structure, we calculate the relative intensities of alpha decay to 2(+) and 4(+) rotational states in the framework of the generalized liquid drop model (GLDM) and improved Royer's formula. The calculated relative intensities of a decay to 2(+) states are in good agreement with the experimental data. For the relative intensities of alpha decay to 4(+) states, a good agreement with experimental data is achieved for Th and U isotopes. The formula we obtain is useful for the analysis of experimental data of alpha-decay fine structure. In addition, some predicted relative intensities which are still not measured are provided for future experiments.
Resumo:
The alpha-decay half-lives of recently synthesized superheavy nuclei (SHN) are investigated by employing a unified fission model (UFM) where a new method to calculate the assault frequency of alpha emission is used. The excellent agreement with the experimental data indicates the UFM is a useful tool to investigate these alpha decays. It is found that the alpha-decay half-lives become more and more insensitive to the Q(alpha) values as the atomic number increases on the whole, which is favorable for us to predict the half-lives of SHN. In addition, a formula is proposed to compute the Q(alpha) values for the nuclei with Z >= 92 and N >= 140 with a good accuracy, according to which the long-lived SHN should be neutron rich. Several weeks ago, two isotopes of a new element with atomic number Z = 117 were synthesized and their alpha-decay chains have been observed. The Q(alpha) formula is found to work well for these nuclei, confirming its predictive power. The experimental half-lives are well reproduced by employing the UFM with the experimental Q(alpha) values. This fact that the experimental half-lives are compatible with experimental Q(alpha) values supports the synthesis of a new element 117 and the experimental measurements to a certain extent.
Resumo:
The inelastic component of the key astrophysical resonance (1(-), E-x=6.15 MeV) in the O-14(alpha,p)F-17 reaction has been studied by using the resonant scattering of F-17+p. The experiment was done at REX-ISOLDE CERN with the Miniball setup. The thick target method in inverse kinematics was utilized in the present experiment where a 44.2 MeV F-17 beam bombarded a similar to 40 mu m thick (CH2)(n) target. The inelastic scattering protons in coincidence with the de-excited 495 keV gamma rays have been clearly seen and they are from the inelastic branch to the first excited state in F-17 following decay of the 1(-) resonance in Ne-18. Some preliminary results are reported.
Resumo:
The alpha-decay half-lives of nuclei in the ground states and Isomeric states have been calculated within the WKB approximation and Royer's formulas. The barrier in the quasimolecular shape path is determined within a generalized liquid drop model (GLDM). in which the centrifugal potential energy has been introduced to study the unfavored a-decay The agreement between the calculated results and experimental data indicates the reliability of studying alpha-decay of isomeric states with the generalized liquid drop model We find that their is no significant difference of preformation probability between Isomeric states and the corresponding ground states generally in favored alpha-decay Additionally. we extended Royer's formulas by taking account of the role of centrifugal harrier to study the unfavored alpha-decay, and some predicts oil the a decay half-lives of Isomers are made Finally. the effects of angular momontum transfer and Q(alpha) on alpha-decay half-life have been discussed Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved
Resumo:
The alpha decay constant is the product of the penetrability P and assault frequency nu(0) in the fission-like model. An effective assault frequency P-nu replacing the previous assault frequency nu(0) is introduced for improvement of a fission-like model named the generalized liquid drop model (GLDM) to describe the nuclear alpha decay process more accurately. Two analytical formulae are proposed for the effective assault frequency due to experimental data within the GLDM. The improved model can be used to give accurate calculations for alpha decay half-lives.
Resumo:
In the framework of the generalized liquid drop model (GLDM) and improved Royer's formula, we investigate the branching ratios and half-lives of alpha-decay to the members of the ground-state rotational bands of heavy even-even Fm and No isotopes. The calculated results are in good agreement with the available experimental data and some useful predictions are provided for future experiments.