221 resultados para Algal Bloom


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both arsenic pollution and eutrophication are prominent environmental issues when considering the problem of global water pollution. It is important to reveal the effects of arsenic species on cyanobacterial growth and toxin yields to assess ecological risk of arsenic pollution or at least understand naturally occurring blooms. The sensitivity of cyanobacteria to arsenate has often been linked to the structural similarities of arsenate and phosphate. Thus, we approached the effect of arsenate with concentrations from 10(-8) to 10(-4) M on Microcystis strain PCC7806 under various phosphate regimes. The present study showed that Microcystis strain PCC7806 was arsenate tolerant up to 10(-4) M. And such tolerance was without reference to both content of intra- and extra-cellular phosphate. It seems that arsenate involved the regulation of microcystin synthesis and cellular polyphosphate contributed to microcystin production of Microcystis responding to arsenate, since there was a positive linear correlation of the cellular microcystin quota with the exposure concentration of arsenate when the cells were not preconditioned to phosphate starvation. It is presumed that arsenate could help to actively export microcystins from living Microcystis cells when preconditioned to phosphate starvation and incubated with the medium containing 1 mu M phosphate. This study firstly provided evidence that microcystin content and/or release of Microcystis might be impacted by arsenate if it exists in harmful algal blooms. (C) 2008 Wiley Periodicals, Inc. Environ Toxicol 24:97 94, 2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phytoplankton community in Lake Dianchi (Yunnan Province, Southwestern China) is dominated in April by a bloom of Aphanizomenon, that disappears Suddenly and is displaced by a Microcystis bloom in May. The reasons for the rapid bloom disappearance phenomenon and the temporal variability in the composition of phytoplankton assemblages are poorly understood. Cell growth, ultrastructure and physiological changes were examined in cultures of Aphanizomenon sp. DC01 isolated from Lake Dianchi exposed to different closes of rnicrocystin-RR (MC-RR) produced by the Microcystis bloom. MC-RR concentrations above 100 mu g L-1 markedly inhibited the pigment (chlorophyll-a, phycocyanin) synthesis and caused an increase of soluble carbohydrate and protein contents and nitrate reductase activity of toxin-treated blue-green algae. A drastic. reduction in photochemical efficiency of PSII (Fv/Fm) was also found. Morphological examinationn showed that the Aphanizomenon filaments disintegrated and file cells lysed gradually after 48 h Of toxin exposure. Transmission electron microscopy revealed that cellular inclusions of stressed cells almost leaked out completely and the cell membranes were grossly damaged. These findings demonstrate the allelopathic activity of Microcystis aeruginosa inducing physiological stress and cell death of Aphanizomenon sp. DC01 Although the active concentrations of microcystin were rather high, we propose that microcystin may function as allelopathic Substance due to inhomogeneous toxin concentrations close to Microcystis cells. Hence, it may play a role in species Succession of Aphanizomenon and Microcystis in Lake Dianchi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this review is to identify problems, find general patterns, and extract recommendations for successful management using nontraditional biomanipulation to improve water quality. There are many obstacles that prevent traditional biomanipulation from achieving expectations: expending largely to remove planktivorous fish, reduction of external and internal phosphorus, and macrophyte re-establishment. Grazing pressure from large zooplankton is decoupled in hypereutrophic waters where cyanobacterial blooms flourish. The original idea of biomanipulation (increased zooplankton grazing rate as a tool for controlling nuisance algae) is not the only means of controlling nuisance algae via biotic manipulations. Stocking phytoplanktivorous fish may be considered to be a nontraditional method; however, it can be an effective management tool to control nuisance algal blooms in tropical lakes that are highly productive and unmanageable to reduce nutrient concentrations to low levels. Although small enclosures increase spatial overlap between predators and prey, leading to overestimates of the impact of predation, microcosm and whole-lake experiments have revealed similar community responses to major factors that regulate lake communities, such as nutrients and planktivorous fish. Both enclosure experiments and large-scale observations revealed that the initial phytoplankton community composition greatly impacted the success of biomanipulation. Long-term observations in Lake Donghu and Lake Qiandaohu have documented that silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) (two filter-feeding planktivorous species commonly used in management) can suppress Microcystis blooms efficiently. The introduction of silver and bighead carp could be an effective management technique in eutrophic systems that lack macrozooplankton. We confirmed that nontraditional biomanipulation is only appropriate if the primary aim is to reduce nuisance blooms of large algal species, which cannot be controlled effectively by large herbivorous zooplankton. Alternatively, this type of biomanipulation did not work efficiently in less eutrophic systems where nanophytoplankton dominated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biosynthesis and metabolism of astaxanthin in coenobium alga Scenedesmus obliquus were investigated using a two-stage culture. The first stage was for the analysis of biosynthesis and accumulation of astaxanthin in alga cells which were cultured under induction conditions (incubation at 30 degrees C and illumination of 180 mu mol m(-2) s(-1)) for 48 h. The composition of the secondary carotenoids in algal cells was analyzed and seven ketocarotenoids were identified. The results implied that S. obliquus synthesized astaxanthin from beta-carotene through three possible pathways. In the second stage, the cultures were transferred to normal conditions (incubation at 25 C and illumination of 80 mu mol m(-2) s(-1)) for 72 h. Algal cells accumulated more chlorophyll and biosynthesis of secondary carotenoids terminated, the content of secondary carotenoids decreased from 59.48 to 6.57%. The results inferred that accumulation and metabolism of astaxanthin could be controlled by cultivated conditions which also could lead the mobilization of secondary carotenoids to support the algal cell growth. The results also implied that presumed conversions from astaxanthin to lutein or antheraxanthin could be modulated by culturing conditions. (C) 2008 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silver and bighead carps were cultured in large fish pens to reduce the risks of cyanobacterial bloom outbreaks in Meiliang Bay, Lake Tauhu in 2004 and 2005. Diet compositions and growth rates of the carps were studied from April to November each year. Both carp species fed mainly on zooplankton (> 50% in diet) in 2004 when competition was low, but selected more phytoplankton in 2005 when competition was high. Silver carp had a broader diet breadth than did bighead carp. Higher densities and fewer food resources increased diet breadths but decreased the diet overlap in both types of carps. It can be predicted that silver and bighead carps would be released from diet competition and shift to feed mainly on zooplankton at low densities, decreasing the efficiency of controlling cyanobacterial blooms. Conclusively, when silver and bighead carps are used to control cyanobacterial blooms, a sufficiently high stocking density is very important for a successful practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blooms of cyanobacteria, or blue-greens, are known to produce chemicals, such as microcystins, which can be toxic to aquatic and terrestrial organisms. Although previous studies have examined the fate of microcystins in freshwater lakes, primary elimination pathways and factors affecting degradation and loss have not been fully explained. The goal of the present study was to explore sources of algal toxins and investigate the distribution and biodegradation of microcystins in water and sediment through laboratory and field analyses. Water and sediment samples were collected monthly from several locations in Lake Taihu from February 2005 to January 2006. Samples were analyzed for the presence of microcystin. Water and sediment were also used in laboratory studies to determine microcystin degradation rates by spiking environmental samples with known concentrations of the chemical and observing concentration changes over time. Some water samples were found to efficiently degrade microcystins. Microcystin concentrations dropped faster in water collected immediately above lake sediment (overlying water). Degradation in sediments was higher than in water. Based on spatial distribution analyses of microcystin in Lake Taihu, higher concentrations (relative to water concentrations) of the chemical were found in lake sediments. These data suggest that sediments play a critical role in microcystin degradation in aquatic systems. The relatively low levels of microcystins found in the environment are most likely due to bacterial biodegradation. Sediments play a crucial role as a source (to the water column) of bio-degrading bacteria and as a carbon-rich environment for bacteria to proliferate and metabolize microcystin and other biogenic toxins produced by cyanobacteria. These, and other, data provide important information that may be applied to management strategies for improvement of water quality in lakes, reservoirs and other water bodies. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas vesicles provide buoyancy to Microcystis and other common cyanobacterial bloom-forming species. gvpA and gvpC are structural genes encoding gas vesicle proteins. Phylogenetic analyses of 10 Microcystis strains/uncultured samples showed that gvpC and each intergenic segment of the gvpA-gvpC region can be divided into two types. The combination of different types of gvpC and intergenic segments is an important factor that diversifies this genomic region. Some Microcystis strains isolated in China possess a 172 to 176 bp sequence tag in the intergenic segment between gvpA and gvpC. The gvpA-gvpC region in Microcystis can be divided into at least 4 classes and more numbers of subclasses. Compared to rbcLX and other regions, the high variability of the gvpA-gvpC region should be more useful in identifying geographical isolates or ecotypes of Microcystis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to gain insight into the bloom sustainment of colonial Microcystis aeruginosa Katz., physiological characterizations were undertaken in this study. Compared with unicellular Microcystis, colonial Microcystis phenotypes exhibited a higher maximum photosynthetic rate (Pm), a higher maximum electron transfer rate (ETRmax), higher phycocyanin content, and a higher affinity for inorganic carbon (K-0.5 DIC <= 8.4 +/- 0.7 mu M) during the growth period monitored in this study. This suggests that photosynthetic efficiency is a dominant physiological adaptation found in colonial Microcystis, thus promoting bloom sustainment. In addition, the high content of soluble and total carbohydrates in colonial Microcystis suggests that this phenotype may possess a higher ability to tolerate enhanced stress conditions when compared to unicellular (noncolonial) phenotypes. Therefore, high photosynthetic activities and high tolerance abilities may explain the bloom sustainment of colonial Microcystis in eutrophic lakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I-k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to examine the effects of chemical nonylphenols (NPs) on the antioxidant system of Microcystis aeruginosa strains. The degradation and sorption of NPs by M. aeruginosa were also evaluated. High concentrations of NPs (1 and 2 mg/l) were found to cause increases in superoxidase dismutase (SOD) and glutathione-S-transferase (GST) activities and in glutathione (GSH) levels. These results suggest that toxic stress manifested by elevated SOD and GST levels and GSH contents may be responsible for the toxicity of NPs to M. aeruginosa and that the algal cells could improve their antioxidant and detoxification ability through the enhancement of enzymatic and nonenzymatic prevention substances. The observed elevations in GSH levels and GST activities were relatively higher than those in SOD activities, indicating that GSH and GST contributed more in eliminating toxic effects than SOD. Low concentrations of NPs (0.05-0.2 mg/l) enhanced cell growth and decreased GST activity in algal cells of M. aeruginosa, suggesting that NPs may have acted as a protecting factor, such as an antioxidant. The larger portion of the NPs (> 60%) disappeared after 12 days of incubation, indicating the strong ability of M. aeruginosa to degrade the moderate persistent NP compounds. The sorption ratio of M. aeruginosa after a 12-day exposure to low nominal concentrations of NPs (0.02-0.5 mg/l) was relatively high (> 30%). The fact that M. aeruginosa effectively resisted the toxic effects of NPs and strongly degraded these pollutants indicate that M. aeruginosa cells have a strong ability to adapt to variations in environmental conditions and that low and moderate concentrations of organic compounds may favor its survival. Further studies are needed to provide detailed information on the fate of persistent organic pollutants and the survival of algae and to determine the possible role of organic pollutants in the occurrence of water blooms in eutrophic lakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several assay methods were screened for viability assessment in cyanobacteria using Microcystis aeruginosa FACHB 905. Compared with fluorescent diacetate (FDA), Evan's Blue and autofluorescence, the 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide (MTT) assay, which was based on the ability of viable cells to reduce MTT to formazan, was found to be reliable and was selected for further study. MTT concentration, incubation time and temperature were optimized for M. aeruginosa. Improvements to the sensitivity and reproducibility of the MTT assay included performing it in the dark to reduce the effects of formazan light sensitivity when extracted in DMSO. Another improvement involved collecting viability data by cell by counting rather than colourimetrically, which was concluded from the fact that oxidoreductase activity, responsible for MTT reduction, would elevate or decrease under stress conditions. Half-life of oxidoreductase in dead cell was calculated to be 3 h. The MTT assay was also found to be applicable to other cyanobacteria and diatoms, including field samples, but not for algae belonging to Chlorophyta, Euglenophyta, Pyrrophyta or Chrysophyta. Based on the above results, we proposed an optimized procedure for the MTT method on Microcystis strains. The use of this assay may be of importance to better understand the dynamics of bloom and the fate of Microcystis under natural or disturbed conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms were studied in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. We sampled four fishes: the phytoplanktivorous Hypophthalmichthys molitrix and Aristichthys nobilis, the omnivorous Carassius auratus, and the carnivorous Culter ilishaeformis. Alterations of the antioxidant (GSH) and the major antioxidant enzymes (CAT, SOD, GPx, GST) in livers were monitored monthly, and the ultrastructures of livers were compared between the bloom and post-bloom periods. During the cyanobacterial blooms, the phytoplanktivorous fishes displayed only slight ultrastructural changes in liver, while the carnivorous fish presented the most serious injury as swollen endomembrane system and morphologically altered nuclei in hepatocytes. Biochemically, the phytoplanktivorous fishes possessed higher basal GSH concentrations and better correlations between the major antioxidant enzymes in liver, which might be responsible for their powerful resistance to MCs. This article provided physiological and toxicological evidences for the possible succession of fish communities following occurrence of toxic cyanobacterial blooms and also for the applicability of using phytoplanktivorous fish to counteract toxic cyanobacterial blooms in natural waters. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allelopathic effects of the submerged macrophyte Potamogeton malaianus on Scenedesmus obliquus were assessed using a twophase approach under controlled laboratory conditions. In the co- culture experiment ( phase I), the growth of S. obliquus at two different initial cell densities was significantly inhibited by P. malaianus. Moreover, the growth inhibition was dependent on the biomass density of P. malaianus. Antioxidant enzymes ( SOD, CAT and POD), MDA, APA, total soluble protein, protein electrophoretic pattern and morphology of S. obliquus were determined after the coculture experiment was terminated. The activities of SOD, CAT, POD and APA at the low initial cell density were stimulated, the contents of MDA and total soluble protein were increased, and some special protein bands disappeared in P. malaianus treatments. The macrophyte had no effect on the activities of SOD and APA at the high initial cell density, but significantly influenced other physiological parameters of S. obliquus with the increase of biomass density. The morphology of S. obliquus showed no difference in the macrophyte treatments and the controls, and the cultures were dominated by 4- celled coenobia. The results indicated P. malaianus had significant allelopathic effects on the growth and physiological processes of S. obliquus. Moreover, the allelopathic effects depended on initial algal cell density, biomass density of the macrophyte, and their interaction. In the experiment of P. malaianus culture filtrates ( phase II), filtrates from combined culture of plant and S. obliquus at the low initial cell density exhibited no apparent growth inhibitory effect on S. obliquus. The result showed that initial addition of growth- inhibiting plant filtrates had no allelopathic effect on S. obliquus. We concluded that the allelopathic effects on S. obliquus were found in the presence of P. malaianus, but not in P. malaianus filtrates. However, the absence of allelopathic effect on S. obliquus might be due to the very low concentrations of allelochemicals in the filtrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Damming, and thus alteration of stream flow, promotes higher phytoplankton populations and encourages algal blooms (density > 10(6) cells L-1) in the Three Gorges Reservoir (TGR). Phytoplankton composition and biomass were studied in the Yangtze River from March 2004 to May 2005. 107 taxa were identified. Diatoms were the dominant group, followed by Chlorophyta and Cyanobacteria. In the Yangtze River, algal abundance varied from 3.13 x 10(3) to 3.83 x 10(6) cells L-1, and algal biomass was in the range of 0.06 to 659 mg C m(-3). Levels of nitrogen, phosphorus and silica did not show consistent longitudinal changes along the river and were not correlated with phytoplankton parameters. Phytoplankton abundance was negatively correlated with main channel discharge (Spearman r = -1.000, P < 0.01). Phytoplankton abundance and biomass in the Yangtze River are mainly determined by the hydrological conditions rather than by nutrient concentrations.