103 resultados para AZO GROUPS
Resumo:
The gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane gases in a series of poly(aryl ether ketone)s was examined. These polymer membranes have a wide range of permeability coefficients and permselectivity coefficients, showing excellent gas-transport properties. The enhanced interchain interaction in the polymers due to intermolecular hydrogen bonds and ionic bonds results in a considerable increase in permselectivity but a decrease in permeability. On the contrary, the polymers with bulky arkyl substituents show significantly increased permeability. The causes of this trend are interpreted in terms of the free volume, interchain distance, and glass transition temperature together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest is the observation that the ionomer IMPEK-K+, which simultaneously contains bulky isopropyl substituents and pendant carboxylate groups, exhibits over twice higher CO2 permeability and 15% higher CO2/CH4 permselectivity than those of bisphenol-A p'olysulfone (PSF). The possibility of using the new synthesized poly(aryl ether ketone)s in gas separation membrane application is also discussed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Novel high glass transition temperature polyaryletherketones, containing pendant amido, alkyl, and carboxyl groups with reduced viscosity above 0.54 dL/g, were synthesized via solution nucleophilic polycondensation reaction of phenolphthalin, 2',2 ''-diisopropyl-5',5 ''-dimethylphenolphthalin, and 3,3'-bis(4-hydroxyphenyl)isobenzopyrrolidone with bis(4-nitrophenyl)ketone in the presence of potassium carbonate. By ion exchange with Na+ and K+, four ionomers were also prepared. A new monomer simultaneously containing carboxyl and algyl substituents was synthesized by reduction reaction of 2',2 ''-diisopropyl-5',5 ''-dimethyl-phenolphthalein. The resulting polymers were soluble in a few polar aprotic solvents; transparent, colorless, and tough films could easily be cast from DMF or DMSO solution. The mechanical properties of the films were excellent; and their tensile strength, elongation at break, and tensile moduli were in the range of 67.1-97.1 MPa, 7.8-165%, and 1.47-2.27 GPa, respectively. The prepared polymers showed fairly good thermal stability and resonably high glass transition temperatures above 210 degrees C. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The synthesis and characterization of side-chain liquid crystalline (LC) polyacrylates containing para-nitroazobenzene (Pn) as mesogenic groups were described. Homopolymers with 3 and 4 carbon atoms in the spacers were non-LC polymers; for homopolymers with 6 carbon atoms in the spacer, nematic LC behavior was observed. Copolymers with acrylic acid as one component exhibited an S-Ad phase according to the WAXD results which showed the d/l of 1.4-1.54 for the copolymers with 3, 4, and 6 carbon atoms in the spacers. Considering the molecular structure as well as the WAXD results of the copolymers, the possible molecular arrangement in the smectic Sad phase was proposed, in which the smectic layers were composed of the antiparallel mesogens and the antiparallel arrangement was considered to be enhanced due to the H bond between - COOH and - NO2. The stress-induced orientational phenomena of Pn in the LC states was also discussed. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Polyacrylates containing para-nitro azobenzene have been synthesized by free radical polymerization. The influence of the length of the spacer of the homopolyacrylates (HPn, n=3,4,6), content of methyl acrylate in the copolyacrylates (CP6) with para-nitro azobenzene groups on the thermal properties, such as liquid crystallinity, Tg and Tm, was studied by DSC, WAXD and polarized optical microscopy. Among the polymers studied, only the homopolyacrylate (HP6)with six carbon atoms in the spacer exhibited a nematic phase. The second-harmonic generation (SHG) signal of the poled HP6 film was detected qualitatively by Maker-fringer method.
Resumo:
In order to define the force of heteropoly acids on absorbed activated carbon surface, IR spectra of 12-silicotungstic acid (SiW12) and 12-tungstophosphoric acid (PW12) absorbed on activated carbon and in oxygen-containing organic compound solutions were studied. Based on the IR spectra and UV characteristics of the heteropoly acids in various chemical conditions, the chemical bonding between heteropoly acid and oxygen-containing gropus on the surface of activated carbon was suggested.
MODIFIED POLYSULFONES .1. SYNTHESIS AND CHARACTERIZATION OF POLYSULFONES WITH UNSATURATED END-GROUPS
Resumo:
Chloro-terminated polysulfones with various molecular weights were modified with poly(ethylene oxide) and poly[(ethylene oxide)(propylene oxide)] macromers carrying alpha-hydroxyl and omega-allyl end groups via classical polycondensation reactions. The pr
Resumo:
New functional copolyether sulfones with pendant aldehyde groups were synthesized by the classical polycondensation reaction between 4,4' -dichlorodiphenyl sulfone (I) and various bisphenols such as 5,5'-methylene bis-salicylaldehyde (II-2), 2,2-bis( 4-hydroxyphenyl)propane (III), and 2,6-bis(4-hydroxybenzylidene)cyclohexanone (IV). Condensation reaction with 4-aminophenol led to pendant phenolic azomethine groups containing copolyether sulfones. The structures of the resulting polymers were confirmed by IR, H-1-NMR spectra, and elemental analyses. The polymers were characterized by reduced viscosity, solubility, thermal stability, DSC, and x-ray diffraction measurements.
Resumo:
Zooplankton plays a vital role in marine ecosystems. Variations in the zooplankton species composition, biomass, and secondary production will change the structure and function of the ecosystem. How to describe this process and make it easier to be modeled in the Yellow Sea ecosystem is the main purpose of this paper. The zooplankton functional groups approach, which is considered a good method of linking the structure of food webs and the energy flow in the ecosystems, is used to describe the main contributors of secondary produciton of the Yellow Sea ecosystem. The zooplankton can be classified into six functional groups: giant crustaceans, large copepods, small copepods, chaetognaths, medusae, and salps. The giant crustaceans, large copepods, and small copepods groups, which are the main food resources for fish, are defined depending on the size spectrum. Medusae and chaetognaths are the two gelatinous carnivorous groups, which compete with fish for food. The salps group, acting as passive filter-feeders, competes with other species feeding on phytoplankton, but their energy could not be efficiently transferred to higher trophic levels. From the viewpoint of biomass, which is the basis of the food web, and feeding activities, the contributions of each functional group to the ecosystem were evaluated; the seasonal variations, geographical distribution patterns, and species composition of each functional group were analyzed. The average zooplankton biomass was 2.1 g dry wt m(-2) in spring, to which the giant crustaceans, large copepods, and small copepods contributed 19, 44, and 26%, respectively. High biomasses of the large copepods and small copepods were distributed at the coastal waters, while the giant crustaceans were mainly located at offshore area. In summer, the mean biomass was 3.1 g dry wt m(-2), which was mostly contributed by the giant crustaceans (73%), and high biomasses of the giant crustaceans, large copepods, and small copepods were all distributed in the central part of the Yellow Sea. During autumn, the mean biomass was 1.8 g dry wt m(-2), which was similarly constituted by the giant crustaceans, large copepods, and small copepods (36, 33, and 23%, respectively), and high biomasses of the giant crustaceans and large copepods occurred in the central part of the Yellow Sea, while the small copepods were mainly located at offshore stations. The giant crustaceans and large copepods dominated the zooplankton biomass (2.9 g dry wt m(-2)) in winter, contributing respectively 57 and 27%, and they, as well as the small copepods, were all mainly located in the central part of the Yellow Sea. The chaetognaths group was mainly located in the northern part of the Yellow Sea during all seasons, but contributed less to the biomass compared with the other groups. The medusae and salps groups were distributed unevenly, with sporadic dynamics, mainly along the coastline and at the northern part of the Yellow Sea. No more than 10 species belonging to the respective functional groups dominated the zooplankton biomass and controlled the dynamics of the zooplankton community. The clear picture of the seasonal and spatial variations of each zooplankton functional group makes the complicated Yellow Sea ecosystem easier to be understood and modeled. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
3-Acetamidotropolone 1 reacted with p-substitutedbenzenediazonium chloride in pyridine to afford 3-acetamido-5-(4-substitutedphenylazo)tropolones 2a similar tof. Hydrolysis of compounds 2a similar tof gave 3-amino-5-(4-substitutedphenylazo)tropolanes 3a similar tof which could not be obtained directly from reactions of 3-aminotropolone with p-substitutedbenzenediazonium chloride. The structure of these new compounds 2a, 2c similar tof, 3a, 3c similar tof were confirmed from the elemental analysis and spectral data.