218 resultados para 4-TRIMETHYLPENTYL PHOSPHINIC ACID
Resumo:
Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals ((OH)-O-.) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that (OH)-O-. photoproduction increased from 1.80 to 2.74 muM by increasing the HA concentration from 10 to 40 mg L-1 at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of (OH)-O-. in the HA solution with Fe(111) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of (OH)-O-. in HA solution with algae with or without Fe(111) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of (OH)-O-. in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest (OH)-O-. photoproduction at pH 4.0.
Resumo:
The acid-base stabilities of Al-13 and Al-30 in polyaluminum coagulants during aging and after dosing into water were studied systematically using batch and flow-through acid-base titration experiments. The acid decomposition rates of both Al-13 and Al-30 increase rapidly with the decrease in solution pH. The acid decompositions of Al-13 and Al-30 with respect to H+ concentration are composed of two parallel first-order and second-order reactions, and the reaction orders are 1.169 and 1.005, respectively. The acid decomposition rates of Al-13 and Al-30 increase slightly when the temperature increases from 20 to ca. 35 A degrees C, but decrease when the temperature increases further. Al-30 is more stable than Al-13 in acidic solution, and the stability difference increases as the pH decreases. Al-30 is more possible to become the dominant species in polyaluminum coagulants than Al-13. The acid catalyzed decomposition and followed by recrystallization to form bayerite is one of the main processes that are responsible for the decrease of Al-13 and Al-30 in polyaluminum coagulants during storage. The deprotonation and polymerization of Al-13 and Al-30 depend on solution pH. The hydrolysis products are positively charged, and consist mainly of repeated Al-13 and Al-30 units rather than amorphous Al(OH)(3) precipitates. Al-30 is less stable than Al-13 upon alkaline hydrolysis. Al-13 is stable at pH < 5.9, while Al-30 lose one proton at the pH 4.6-5.75. Al-13 and Al-30 lose respective 5 and 10 protons and form [Al-13] (n) and [Al-30] (n) clusters within the pH region of 5.9-6.25 and 5.75-6.65, respectively. This indicates that Al-30 is easier to aggregate than Al-13 at the acidic side, but [Al-13] (n) is much easier to convert to Alsol-gel than [Al-30] (n) . Al-30 possesses better characteristics than Al-13 when used as coagulant because the hydrolysis products of Al-30 possess higher charges than that of Al-13, and [Al-30] (n) clusters exist within a wider pH range.
Resumo:
As a kind of waste collected from restaurants, trap grease is a chemically challenging feedstock for biodiesel production for its high free fatty acid (FFA) content. A central composite design was used to evaluate the effect of methanol quantity, acid concentration and reaction time on the synthesis of biodiesel from the trap grease with 50% free fatty acid, while the reaction temperature was selected at 95 degrees C. Using response surface methodology, a quadratic polynomial equation was obtained for ester content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. To achieve the highest ester content of crude biodiesel (89.67%), the critical values of the three variables were 35.00 (methanol-to-oil molar ratio), 11.27 wt% (catalyst concentration based on trap grease) and 4.59 h (reaction time). The crude biodiesel could be purified by a second distillation to meet the requirement of biodiesel specification of Korea.
Resumo:
As one primary component of Vitamin B-3, nicotinic acid [pyridine 3-carboxylic acid] was synthesized, and calorimetric study and thermal analysis for this compound were performed. The low-temperature heat capacity of nicotinic acid was measured with a precise automated adiabatic calorimeter over the temperature rang from 79 to 368 K. No thermal anomaly or phase transition was observed in this temperature range. A solid-to-solid transition at T-trs = 451.4 K, a solid-to-liquid transition at T-fus = 509.1 K and a thermal decomposition at T-d = 538.8 K were found through the DSC and TG-DTG techniques. The molar enthalpies of these transitions were determined to be Delta(trs)H(m =) 0.81 kJ mol(-1), Delta(fus)H(m) 27.57 kJ mol(-1) and Delta(d)H(m) = 62.38 kJ mol(-1), respectively, by the integrals of the peak areas of the DSC curves.
Resumo:
Three nitrophenol isomer-imprinted polymers were prepared under the same conditions using 4-vinylpyridine as a functional monomer. Different recognition capacities for template molecules were observed for the three polymers. Another imprinting system with stronger acidity than nitrophenol isomers, 2-hydroxybenzoic acid (salicylic acid) and 4-hydroxybenzoic acid, was imprinted using 4-vinylpyridine or acrylamide as functional monomer respectively. Both 4-hydroxybenzoic acid-imprinted polymers using the two monomers showed recognition ability for the template molecule. However, when acrylamide was chosen as functional monomer, the salicylic acid-imprinted polymer showed very weak recognition for the template molecule, whereas strong recognition ability of the resultant polymer for salicylic acid was observed with 4-vinylpyridine as functional monomer. It seems that the structure and acidity of template molecules is responsible for the difference in recognition, by influencing the formation and strength of interaction between template molecule and functional monomer during the imprinting process. An understanding of the mechanism of molecular imprinting and molecular recognition of MIPs will help to predict the selectivity of MIPs on the basis of template molecule properties. Copyright (C) 2003 John Wiley Sons, Ltd.