178 resultados para 307


Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用高智提出的数值摄动算法,把求解对流扩散方程常用三阶迎风格式(3-UDS)(粘性项和对流项分别用二阶中心格式和3-UDS离散)进行了高精度重构,包括使用离散单元内所有节点的全域重构和分别使用上下游节点的上下游重构,得到两类新的更高阶精度迎风差分格式,称为高的迎风差分格式(记作GUDS)。讨论了GUDS的数学性质,GUDS比原来的3-UDS精度显著提高;全域重构的GUDS和3-UDS均为条件稳定,一些上下游重构GUDS为绝对稳定。本文通过稳定性分析和四个算例(一维常系数、变系数、非线性及二维变系数对流扩散方程)的计算证实了GUDS的优良性质。上下游重构GUDS为避免在3-UDS中使用人工粘性提供了一条有效途径,适合于求解高Reynolds数线性和非线性问题。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the structural and surface properties of Co-loaded sulfated zirconia (SZ) catalysts were studied by X-ray diffraction (XRD), N-2 adsorption, NH3-TPD, FT-IR spectroscopy, H-2-TPR, UV-vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and NO-TPD. NH3-TPD and FT-IR spectra results of the catalysts showed that the sulfation process of the support resulted in the generation of strong Bronsted and Lewis acid sites, which is essential for the SCR of NO with methane. On the other hand, the N-2 adsorption, H-2-TPR, UV/vis DRS, and XPS of the catalysts demonstrated that the presence of the SO42- species promoted the dispersion of the Co species and prevented the formation Of Co3O4. Such an increased dispersion of Co species suppressed the combustion reaction of CH4 by O-2 and increased the selectivity toward NO reduction. The NO-TPD proved that the loading of Co increased the adsorption of NO over SZ catalysts, which is another reason for the promoting effect of Co. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic flow profiles and column efficiencies in conically shaped semi-preparative liquid chromatographic columns (inlet ID larger than outlet ID) with two different conical angles (7degrees and 15degrees) were studied. The dynamic flow profiles were studied by an on-column visualization method. Conical columns were compared with cylindrical column of the same length and internal volume. The results showed that the flow profile of a sample band in the conical column of 7degrees (50 mm x 17 mm --> 11 mm ID) was parabolic in shape. The sample band migrated slower in the wall region than in the central region, as in the cylindrical column (50 mm x 14 mm ID). However, the sample band in the conical column of 15degrees (50 mm x 20 mm --> 7 mm ID) migrated slower in the central region than in the wall region, resulting in a reverse parabolic flow profile, in contrast to that in cylindrical column. This indicated that a flat flow profile might be realized in a conical column with a conical angle between 7degrees and 15degrees. The conical column of 15degrees had the highest column efficiency among the three columns under the same conditions. Compared with the cylindrical column packed with identical packing material, the conical column of 15degrees had 22%-45% higher column efficiency and 11%-27% higher peak height.