136 resultados para 2D lattice
Resumo:
In order to understand the coarsening of microdomains in symmetric diblock copolymers at the late stage, a model for block copolymers is proposed. By incorporating the self consistent field theory with the free energy approach Lattice Boltzmann model, hydrodynamic interactions can be considered. Compared with models based on Ginzburg-Landau free energy, this model does not employ phenomenological free energies to describe systems. The model is verified by comparing the simulation results obtained using this method with those of a dynamical version of the self consistent mean field theory. After that,the growth exponents of the characteristic domain size for symmetric block copolymers at late stage are studied. It is found that the viscosity of the system affects the growth exponents greatly, although the growth exponents are all less than 1/3 Furthermore, the relations between the growth exponent, the interaction parameter and the chain length are studied.
Resumo:
The self-assembly of symmetric coil-rod-coil ABA-type triblock copolymer melts is studied by applying self-consistent field lattice techniques in a three-dimensional space. The self-assembled ordered structures differ significantly with the variation of the volume fraction of the rod component, which include lamellar, wave lamellar, gyroid, perforated lamellar, cylindrical, and spherical-like phases. To understand the physical essence of these phases and the regimes of occurrence, we construct the phase diagram, which matches qualitatively with the existing experimental results. Compared with the coil-rod AB diblock copolymer, our results revealed that the interfacial grafting density of the separating rod and coil segments shows important influence on the self-assembly behaviors of symmetric coil-rod-coil ABA triblock copolymer melts. We found that the order-disorder transition point changes from f(rod)=0.5 for AB diblock copolymers to f(rod)=0.6 for ABA triblock copolymers. Our results also show that the spherical-like and cylindrical phases occupy most of the region in the phase diagram, and the lamellar phase is found stable only at the high volume fraction of the rod.
Resumo:
Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.
Resumo:
In this work, a gradient polystyrene colloidal photonic crystal was fabricated by annealing in a graded temperature field. The lattice constant of the gradient crystal gradually varied along the temperature-gradient direction. The positional bandgap wavelength as well as the attenuation of the bandgap wavelength could be tuned dependent on the position of the gradient colloidal crystal along the gradient direction because of the lattice-constant variation.
Resumo:
Effects of chain flexibility on the conformation of homopolymers in good solvents have been investigated by Monte Carlo simulation. Bond angle constraint coupled with persistence length of polymer chains has been introduced in the modified eight-site bond fluctuation simulation model. The study about the effects of chain flexibility on polymer sizes reveals that the orientation of polymer chains under confinement is driven by the loss of conformation entropy. The conformation of polymer chains undergoing a gradual change from spherical iso-diametric ellipsoid to rodlike iso-diametric ellipsoid with the decrease of polymer chain flexibility in a wide region has been clearly illustrated from several aspects. Furthermore, a comparison of the freely jointed chain (FJC) model and the wormlike chain (WLC) model has also been made to describe the polymer sizes in terms of chain flexibility and quasi-quantitative boundary toward the suitability of the models.
Resumo:
We develop a self-consistent-field lattice model for block copolymers and propose a novel and general method to solve the self-consistent-field equations. The approach involves describing the polymer chains in a lattice and employing a two-stage relaxation procedure to evolve a system as rapidly as possible to a free-energy minimum. In order to test the validity of this approach, we use the method to study the microphases of rod-coil diblock copolymers. In addition to the lamellar and cylindrical morphologies, micellar, perforated lamellar, gyroid, and zigzag structures have been identified without any prior assumption of the microphase symmetry. Furthermore, this approach can also give the possible orientation of the rods in different structures.
Resumo:
A wet chemical approach is used successfully to produce nanostructured Au material by the reduction of sulfonated polyaniline (SPANI) nanotubes. The Au nanostructures obtained are composed of single crystal Au nanoplates, which are aggregated layer-by-layer into stacks or edge-on-face into clusters at various conditions. The Au nanoplate diameter and thickness can be conveniently controlled in the range of 100 nm to 2 mu m and 10 to 30 nm, respectively, with no accompanying single Au nanoparticles being observed. The formation of the Au nanostructures was controlled by the degradation of SPANI. The gradually and slowly released segments of SPANI served as the reductant during the growth of the 2D Au nanostructures.
Resumo:
By using the study of the lattice energy and the structural parameters of binary inorganic crystals, a new parameter reflecting the thermal expansion property has been found, the relation between the linear expansion coefficient and new parameter has been established. A semiempirical method for evaluation of linear expansion coefficient from the lattice energy is presented, and developed to the complex crystals. The estimated values of the linear expansion coefficients of both simple and complex crystals are in good agreement with the experimental values.
Resumo:
A novel organic-inorganic hybrid compound [Cu(phen)](2)[(VV4As2O19)-V-IV-As-V-O-V].0.5H(2)O 1 has been hydrothermally synthesized. Its structure, determined by single crystal X-ray diffraction, exhibits an unusual two-dimensional arsenic vanadate layered network grafted with the [Cu(phen)](2+) complex. The chelating phen ligands project perpendicularly beyond the inorganic layer. Variable temperature magnetic susceptibility studies indicate that both ferro- and antiferro-magnetic interactions exist in 1.
Resumo:
The cloud-point temperatures (T-cl's) of trans-decahydronaphthalene(TD)/polystyrene (PS, (M) over bar (w) = 270 000) solutions were determined by light scattering measurements over a range of temperatures (1-16degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol.-% polymer). The system phase separates upon cooling and T-cl was found to increase with rising pressure for constant composition. In the absence of special effects, this finding indicates positive excess volume for the mixing. Special attention was paid to the demixing temperatures as a function of pressure for different polymer solutions and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of polymer solutions under different pressures were observed for different compositions, which demonstrated that pressure has a greater effect on the TD/PS solutions when far from the critical point as opposed to near the critical point. The Sanchez-Lacombe lattice fluid theory (SLLFT) was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of mixing, and the volume changes of mixing. The calculated results show that modified PS scaling parameters can describe the thermodynamics of the TD/PS system well. Moreover the SLLFT describes the experimental results well.
Resumo:
A new centrosymmetrical heterotrinuclear complex, {[Cu(oxbe)](2)Co(H2O)(2)}.2DMF.DMA with 2D supramolecular structure, has been obtained by the self-assembly of a dissymmetrical building block [Cu(oxbe)](-) with bivalent metal ion Co2+, where H(3)oxbe is dissymmetrical ligand N-benzoato-N'-(2-aminoethyl)oxamido, DMF = dimethylformamide, DMA = dimethylamine. Its structure was determined by single crystal X-ray analysis. The molecular structure is centrosymmetrical with the cobalt atom lying on an inversion center. Through the hydrogen bonds and d-pi stacking interactions, a 2D supramolecular structure is formed. This study exemplifies a new method for the assembly of supramolecular structure using a dissymmetrical brick. Magnetic susceptibility measurements (5-300 K) indicate that the central cobalt and terminal copper metal ions are antiferromagnetically coupled with J = -23.1 cm(-1).
Resumo:
The oxamido-bridged heterobinuclear copper(II)-nickel(II) complex, [Cu(oxbe)Ni(phen)(2)]ClO4.3H(2)O (1) and homotrinuclear nickel(11) complex {[Ni(oxbe)](2)Ni(H2O)(2)}.2.5DMF (2) have been synthesized and characterized by means of elemental analysis, IR, EPR. and electronic spectra and magnetic susceptibility, where H(3)oxbe is dissymmetrical ligand N-benzoato-N'-(2-aminoethyl)ox-amido, phen = 1.10-phenanthroline, DMF = dimethylformamide. Complex I has an extended oxamido-bridged structure consisting of planar copper(II) and octahedral nickel(II) ions. The chi(M) and mu(eff) versus T plots of 1 is typical of an antiferromagnetically coupled Cu(II)-Ni(II,) pair with a spin-doublet ground state, and magnetic analysis leads to J = -57.1 cm(-1). The molecular structure of 2 is centrosymmetrical, with one octahedral nickel atom lying at an inversion center and two terminal Ni(II) atoms in approximately square planar environment. Through the hydrogen bonds and pi- pi stacking interactions, a 2D supramolecular structure is formed.