118 resultados para 1995_01221501 TM-42 4301901
Resumo:
林业研究中的主要兴趣点之一在于通过经验或半经验模型建立林分参数与遥感影像数据间的相互关系来估测林分参数。基于覆盖美国佛罗里达州东北Duval县的遥感数据和两块样地清查数据,论文探讨了所选林分参数与TM影像光谱DN值间的相关性。相关性分析结果表明,单波段或植被指数对林分参数的解释能力低于50%,为此构建了林分参数与影像多波段间多元回归模型来估测林分参数。预测结果通过另一组数据验证,除林分密度外,其它参数估测可信度达75%以上。论文最后探讨了预测模型不足和需改进的地方,并指出该研究有助于更好地理解影像光谱值和林分参数间的关系。图1表2参9。
Resumo:
PVC based membranes of a double armed crown ether, N, N'-dibenzyl, 1,4,10,13-tetraoxa-7, 16-diaza cyclooctadecane (I) as ionophore with sodium tetra phenyl borate (NaTPB) as anion excluder and with many plasticizing solvent mediators have been prepared and used for Hg(II) ion determination. The membrane with DBBP (dibutyl butyl phosphonate ) as plasticizer with various ingredients in the ratio PVC: I: NaTPB: DBBP (150: 12: 2: 100) shows the best results in terms of working concentration range (3.1x10-5-1.0x10-tM) with a Nernstian slope (29.0′0.5 mV/decade of activity). The electrode works in the pH range 2.1-4.5. The response time of the sensor is 15s and it can be used for about 4 months in aqueous as well as in non-aqueous medium. It has good stability and reproducibility. The potentiometric selectivity coefficient values for mono-, di-, and trivalent cations are tabulated. The sensor is highly selective for Hg2+ in the presence of normal interferents like cadmium, silver, sodium and iron.
Resumo:
目的研究文冠果壳苷对侧脑室注射β肽淀粉样蛋白1-4(2Aβ1-42)小鼠学习记忆障碍的改善作用,并初步探讨了其作用机制。方法通过避暗和水迷宫实验检测了小鼠的学习记忆能力;使用分光光度计检测小鼠大脑组织中乙酰胆碱酯酶(AchE)和胆碱乙酰转移酶(ChAT)活性的变化。结果小鼠侧脑室注射凝聚态Aβ1-42显著降低了小鼠被动回避学习记忆能力及空间学习记忆能力(P<0.01),并且小鼠大脑AchE和ChAT活性显著降低(P均<0.05);而文冠果壳苷能够显著减少避暗错误次数,延长潜伏期(分别P<0.05、P<0.01);剂量依赖性地缩短水迷宫实验中小鼠到达安全台的游泳时间(分别P<0.05、P<0.01),不同程度地抑制Aβ1-42模型小鼠的AchE和ChAT活性的降低(P<0.05和<0.01)。结论文冠果壳苷对侧脑室注射Aβ1-42小鼠学习记忆障碍具有显著的改善作用,其作用机制可能与保护中枢胆碱能神经细胞,改善中枢胆碱能神经系统功能等有关。
Resumo:
China has witnessed fast urban growth in the recent decade. This study analyzes spatio-temporal characteristics of urban expansion in China using satellite images and regionalization methods. Landsat TM images at three time periods, 1990/1991, 1995/1996, and 1999/2000, are interpreted to get 1:100000 vector land use datasets. The study calculates the urban land percentage and urban land expansion index of every 1 km(2) cell throughout China. The study divides China into 27 urban regions to conceive dynamic patterns of urban land changes. Urban development was achieving momentum in the western region, expanding more noticeably than in the previous five years, and seeing an increased growth percentage. Land use dynamic changes reflect the strong impacts of economic growth environments and macro-urban development policies. The paper helps to distinguish the influences of newly market-oriented forces from traditional administrative controls on China's urban expansion. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The large uncertainties in estimates of cropland area in China may have significant implications for major cross-cutting themes of global environmental change-food production and trade, water resources, and the carbon and nitrogen cycles. Many earlier studies have indicated significant under-reporting of cropland area in China from official agricultural census statistics datasets. Space-borne remote sensing analyses provide an alternative and independent approach for estimating cropland area in China. In this study, we report estimates of cropland area from the National Land Cover Dataset (NLCD-96) at the 1:100,000 scale, which was generated by a multi-year National Land Cover Project in China through visual interpretation and digitization of Landsat TM images acquired mostly in 1995 and 1996. We compared the NLCD-96 dataset to another land cover dataset at I-km spatial resolution (the IGBP DIScover dataset version 2.0), which was generated from monthly Advanced Very High Resolution Radiometer (AVHRR)-derived Normalized Difference Vegetation Index (NDVI) from April, 1992 to March, 1993. The data comparison highlighted the limitation and uncertainty of cropland area estimates from the DIScover dataset. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
黑白仰鼻猴(Rhinopithecus bieti)目前分布在金沙江和澜沧江之间横断山脉的一个狭小的区域范围内(26o14’N-29o20’N,99o15’E-99o37’E),海拔2 600 m(南部) - 4 200 m(北部)之间;目前大约有15 群,数量估计约1700 个体。是我国特有的灵长类之一,为国家Ⅰ级保护动物,在IUCN(世界自然保护联盟)2007 受威胁物种红皮书中被列为濒危物种并处于小种群、高度片断化状态(ENC 2a)。西藏是黑白仰鼻猴分布的北端,约有300 个体。基于前人的野外调查和报道确认,暗针叶林和针阔叶混交林是其适宜栖息地,人们在低海拔和高海拔砍伐或者火烧暗针叶林和针阔叶混交林的产物-农田和夏季牧场正在逐渐侵蚀着其适宜栖息地。尽管当地藏族村民信奉佛教,禁止猎杀任何野生动物,但是近些年来,黑白仰鼻猴栖息地不断丧失,这与牧场和农田扩张、当地人们薪柴采集等活动有关。黑白仰鼻猴西藏种群主要在原始暗针叶林和和针阔叶混交林里活动。为了评估该物种的栖息地现状和变化情况,我们通过野外调查工作,应用GIS 和RS 技术,分别解译了1986 年、1992 年、1997 年、2001 年和2006 年的Landsat TM/ETM+ 冬季卫星影像,并对解译结果进行了计算和分析,得到了以下西藏种群栖息地的主要结果: 1)现有暗针叶林(包括原始针叶林和针阔混交林)面积是30 500 hm2 ,夏季牧场面积是13 100 hm2 ,农田面积是6 400 hm2 ;2)在过去20 年间(1986-2006 年),暗针叶林面积减少了14.6%(5 200 hm2 ),夏季牧场面积增加了47.2%(4 200 hm2 ),农田面积增加了14.3%(800 hm2 );3)在过去20 年间,暗针叶林的斑块数量增加了68.4%,平均斑块面积下降了49.3%(从1986 年的15.1 hm2 下降到2006 年的7.6 hm2 ),最大的斑块指数下降了54.9%;景观丰富度并没有变化,但Shannon 多样性指数和Shannon 均匀度指数分别增加了2.7%。这都表明栖息地丧失和破碎化程度越来越严重。在上述结果的基础上,我们进一步对栖息地变化的主要原因进行了初步分析和探讨。通过暗针叶林面积、夏季牧场面积和农田面积和当地各乡村的家庭户数、人口数量、平均家庭人口数和牲畜存栏数等统计数据的Spearman秩相关分析表明,暗针叶林面积变化分别与当地的人口数量、家庭户数和平均家庭人口数呈显著负相关,与牲畜存栏数呈负相关;而夏季牧场面积和农田面积都分别与人口数量、家庭户数和平均家庭人口数呈显著正相关,与牲畜存栏数呈正相关。这意味着在目前当地传统生产方式基本未发生改变的情况下,因人口数量增加所带来的生产等活动强度的增加是黑白仰鼻猴栖息地丧失与破碎化加剧的主要原因(R2 = 0.972);当地人类经济活动的增加,如牧场和农田扩张,牲畜存栏数增加以及薪材采集和木质建筑等导致了栖息地丧失、退化和破碎化。但另一方面,当地一妻多夫的婚配制度(仅在西藏部分地区仍有保留)对黑白仰鼻猴的栖息地保护有积极的作用,因为大家庭(家庭人口数)的人均资源消耗,如薪柴需求、房屋数量、牧场和农田等,都比小家庭低。在过去20 年中(1983-2003 年),当地家庭户数的增加比人口数量增加要慢,这对黑白仰鼻猴的栖息地保护起到了一定的积极作用。因此,西藏种群作为单独的遗传亚种群,其保护工作任重而道远。
Resumo:
The ligands 4,4,4-trifluoro-1-phenyl-1.3-butanedione (Hbfa) and 1,10-phenanthroline (phen) were used to prepare ternary lanthanide (Ln) complexes [Dy(bfa)(3)phen and Tm(bfa)(3)phen]. Crystal data: Dy(bfa)(3)phen C(42)H(26)FqN(2)O(6)Dy, triclinic, P (1) over bar, a= 9.9450(6) angstrom, b = 14.0944(9) angstrom, c = 14.6043(9) angstrom, alpha = 82.104(1)degrees, beta = 87.006(1)degrees, gamma = 76.490(1)degrees, V = 1971.1(2)angstrom(3), Z = 2; Tm(bfa)(3)phen C42H26F9N2O6Tm, triclinic, P (1) over bar, a = 9.898(5)angstrom, b = 13.918(5)angstrom, c = 14.753(5)angstrom, a = 83.517(5)degrees, alpha = 86.899(5)degrees, gamma = 76.818(5)degrees, V = 1965.3(14)angstrom(3), Z = 2. The coordination number of the central Ln(3+) (Ln = Dy, Tm) ion is eight, with six oxygen atoms from three Hbfa ligands and two nitrogen atoms from the phen ligand.
Resumo:
LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. The XRD results reveal that the fully crystalline pure LaAlO3 Phase can be obtained at 800 degrees C. The FE-SEM image indicates that the phosphor samples are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light (230 nm) and low-voltage electron beams (1-3 kV), the LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors show the characteristic emissions of Tb3+ (D-1(2)-> H-3(6,4),F-3(4) transitions) and Tm3+ (D-5(3,4)-> F-7(6,5,4,3) transitions) respectively. The CL of the LaAlO3:Tm3+ phosphors have high color purity and comparable intensity to the Y2SiO5:Ce3+ commercial product, and the CL colors of Tb3+-doped LaAlO3 phosphors can be tuned from blue to green by changing the doping concentration of Tb3+ to some extent.
Resumo:
Three-dimensional flowerlike Lu2O3 and Lu2O3:Ln(3+) (Ln = Eu, Th, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures have been successfully synthesized via ethylene glycol (EG)-mediated hydrothermal method followed by a subsequent heat treatment process. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, elemental analysis, inductively coupled plasma atomic absorption spectrometric analysis, ion chromatogram analysis, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. Hydrothermal temperature, EG, and CH3COONa play critical roles in the formation of the lutetium oxide precursor microflowers. The reaction mechanism and the self-assembly evolution process have been proposed. The as-formed lutetium oxide precursor could transform to Lu2O3 With their original flowerlike morphology and slight shrinkage in the size after postannealing process.
Resumo:
Five new complexes based on rare-earth-radical [Ln(hfac)(3)(NIT-5-Br-3py)](2) (Ln=Pr (1), Sm (2), Eu (3), Tb (4), Tm (5); hfac = hexafluoroacetylacetonate; NIT-5-Br-3py = 2-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)-5-bromo-3-pyridine) have been synthesized and characterized by X-ray crystal diffraction. The single-crystal structures show that these complexes have similar structures, in which a NIT-5-Br-3py molecule acts as a bridging ligand linking two Ln(III) ions through the oxygen atom of the N-O group and nitrogen atom from the pyridine ring to form a four-spin system. Both static and dynamic magnetic properties were measured for complex 4, which exhibits single-molecule magnetism behavior.
Resumo:
beta-NaYF4:Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu(3+) (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to D-5(0-3) -> F-7(J) (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively.
Resumo:
LiBa2B5O10:RE3+ (RE = Dy, Tb and Tm) was synthesized by the method of high-temperature solid-state reaction and the thermoluminescence (TL) properties of the samples under the irradiation of the gamma-ray were studied. The result showed that Dy3+ ion was the most efficient activator. When the concentration of Dy3+ was 2 mol%, LiBa2B5O10:Dy3+ exhibited a maximum TL output. The kinetic parameter of LiBa2B5O10:0.02Dy was estimated by the peak shape method, for which the average activation energy was 0.757 eV and the frequency factor was 1.50 x 10(7) s(-1). By the three-dimensional (3D) TL spectrum, the TL of the sample was contributed to the characteristic f-f transition of DY3+. The dose-response of LiBa2B5O10:0.02Dy to gamma-ray was linear in the range from 1 to 1000 mGy. In addition, the decay of the TL intensity of LiBa2B5O10:0.02Dy was also investigated.
Resumo:
The selective separation of Y from yttrium solution containing small heavy rare earth (HRE) impurities (Ho, Er, Tm, Yb, Lu) by liquid-liquid extraction using CA-100 in the presence of a water-soluble complexing agent of ethylenediaminetetraacetic acid (EDTA) was experimentally studied at 298K. Experiments were carried Out in two feeds, Feed-I: [RE](f) = 4.94 x 10(-3) M, Y = 98.5%, HRE (Ho, Er, Tm, Yb, Lu) = 1.5%; Feed-II: [RE](f) = 4.94 x 10(-3) M, Y = 99.9%, HRE (Ho, Er, Tm, Yb, Lu) = 0.1%, as a function of equilibrium pH (pH(eq)), the concentration ratio of [EDTA]:[HRE impurities]. It was shown that the extraction of HRE in the presence of EDTA was suppressed when compared to that of Y because of the masking effect, while the selective extraction of Y was enhanced and the separation factors increased to maximum at appropriate condition for Feed-I: Y/Ho = 1.53, Y/Er = 3.09, Y/Tm = 5.61, Y/Yb = 12.04, Y/Lu = 27.51 at pH 4.37 and [EDTA]:[HRE impurities] = 4: 1, for Feed-II: Y/Ho = 1.32, Y/Er = 1.91, Y/Tm = 2.00, Y/Yb = 3.05, Y/Lu = 3.33 at pH 4.42 and [EDTA]: [HRE impurities] = 8:1. The separation and purification of Y by this method was discussed.