210 resultados para very high pressure liquid chromatography (VHPLC)
Resumo:
A comprehensive two-dimensional liquid chromatographic separation system based on the combination of a CN column and an ODS column is developed for the separation of components in a traditional Chinese medicine (TCM) Rhizoma chuanxiong. Two columns are coupled by a two-position, eight-port valve equipped with two storage loops and controlled by a computer. The effluent is detected by both the diode array detector and atmospheric pressure chemical ionization (APCI) mass spectrometer. More than 52 components in the methanol extract of R. chuanxiong were resolved and 11 of them were preliminary identified according to their UV and mass spectra. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Lanthanum magnesium hexaaluminate is a very important ceramic material for high temperature applications. In this paper lanthanum magnesium hexaaluminate has been synthesized directly by solid-state reaction. The forming mechanism was investigated by XRD. The SEM photographs show that the prepared powders are made of hexagonal plates. These powders can be well sintered at the high temperature (1600 degrees C) under the high pressure (4.5 GPa), and the relative density reaches 94.8%.
Studies on the flavones using liquid chromatography-electrospray ionization tandem mass spectrometry
Resumo:
Fragmentation pathways of nine flavone compounds have been studied by using electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn). Analyzing the product ion spectra of flavonoids and aglycones, we observed some diagnostic neutral losses, such as *CH3, H2O, residue of glucose and gluconic acid, which are very useful for the identification of the functional groups in the structures. Furthermore, specific retro Diels-Alder (RDA) fragments for flavones with different hydroxyl substitution have also been discussed. The information is helpful for the rapid identification of the location site of hydroxyl substitution on flavones. Fragmentation pathways of C-glycosidic flavonoid have also been discussed using ESI-MSn, demonstrating ions [M-H-60](-), [M-H-90](-), [M-H-120](-) are characteristic ions of C-glycosidic flavonoid. According to the fragmentation mechanism of mass spectrometry and HPLC-MS data, the structures of seven flavones in Scutellaria baicalensis Georgi have been identified on-line without time-consuming isolation. The HPLC-ESI-MSn method for analyzing constituents in the Scutellaria baicalensis Georgi has been established.
Resumo:
4-Aminophenol (4-AP), paracetamol (PRCT), norepinephrine (NE), and dopamine (DA) (all somewhat hydrophobic compounds) were HPLC electrochemically detected while the signals from uric acid (UA) and ascorbic acid (AA) (both hydrophilic compounds at the pH studied) were minimized, taking advantage of the permselectivity of the self-assembled n-alkanethiol monolayer (C-10-SAM)-modified Au electrodes based on solute polarity, The effects of various factors, such as the chain length of the n-alkanethiol modifier, modifying time, and pH value, on the permeability of C-10-SAM coatings were examined, The calibration curves, linear response ranges, detection limits, and reproducibilities of the EC detector for 4-AP, PRCT, NE, and DA were obtained, The result shows that the EC detector can be applied in the chromatographic detection of 4-AP, PRCT, NE, and DA in urine, effectively removing the influence of UA and AA in high concentrations existing in biological samples. As a result, a great improvement in the selectivity of EC detectors has been achieved by using Au electrodes coated with neutral n-alkanethiol monolayer.
Resumo:
An assay procedure utilizing pulsed amperometric detection at a platinum-particles modified electrode has been developed for the determination of cysteine and glutathione in blood samples following preliminary separation by reversed-phase liquid chromatography. A chemically modified electrode (CME) constructed by unique electroreduction from a platinum-salt solution to produce dispersed Pt particles on a glassy carbon surface was demonstrated to catalyze the electo-oxidation of sulfhydryl-containing compounds: DL-cysteine (CYS), reduced glutathione (GSH). When used as the sensing electrode in flow-system pulsed-amperometric detection (PAD), electrode fouling could be avoided using a waveform in which the cathodic reactivation process occurred at a potential of - 1.0 V vs. Ag/AgCl to achieve a cathodic desorption of atomic sulfur. A superior detection limit for these free thiols was obtained at a Pt particle-based GC electrode compared with other methods; this novel dispersed Pt particles CME exhibited high electrocatalytic stability and activity when it was employed as an electrochemical detector in FIA and HPLC for the determination of those organo-sulfur compounds.
Resumo:
A sensitive high-performance liquid chromatographic method has been developed for the quantitative determination of aminopyrine (AM) and its metabolite 4-aminoantipyrine (AAN). The method utilizes reverse-phase chromatography/amperometric detection with a glassy carbon electrode dispersed with alpha-arumina particles as the working electrode, on which the oxidation of AM and AAN was greatly improved compared with that on a bare glassy carbon electrode. As a result, the detection limit was as low as 1.4 ng for AM and 0.8 ng for AAN, and the calibration plots for the above compounds have wide linear ranges from 100 ng/mL to 100 mu g/mL and 60 ng/mL to 80 mu g/mL (for AM and AAN, respectively). The above method was applied for the detection of these materials in human urine with satisfactory results.
Resumo:
A novel Prussian blue chemically modified electrode (CME) was constructed and characterized for liquid chromatography electrochemical detection (LCEC) of catecholamines. Both anodic and cathodic peaks could be obtained by monitoring at constant applied potential at anodic and slightly cathodic potential ranges (0.3-0.7 and -0.2-0.1 V vs. SCE), respectively. When arranged in a series configuration, using the modified electrodes as generating and collecting detectors, extremely high effective collection efficiencies of 0.91 (for norepinephrine) and 0.58 (for dihydroxyphenylacetic acid) were achieved in dual-electrode LCEC for catecholamines; and a linear response range over 3 orders of magnitude and a detection limit of 10 pg were obtained with a downstream CME as the indicating detector.
Resumo:
The dispersion of alumina particles on a glassy-carbon surface serving as a modified electrode significantly enhances the amperometric detection of cysteine and glutathione following liquid chromatography. With an applied potential of 0.8 V vs. SCE, the detection limits were 1.2 ng for cysteine and 8 ng for glutathione and the electrode response was linear up to 600 ng for cysteine and 1.8-mu-g for glutathione. The modified electrode displayed high sensitivity and stability and was easy and inexpensive to prepare.
Resumo:
Two methods for tetrodotoxin analysis using liquid chromatography coupled with electrospray iontrap mass spectrometry (LC-ESI-MS) have been established with C,, reversed phase column and hydrophilic interaction liquid chromatography (HILIC) column, respectively. Sensitivity and reproducibility of the methods were compared. The method using C-18 column in selected ion monitoring (SIM) mode had a detection limit (S/N = 3) of 120 pg, and a good linearity of the calibration curve was obtained for tetrodotoxin (r = 0. 9992). High reproducibility of the method was observed, with a relative standard deviation (RSD) below 10%. The method using HILIC column in SIM mode and selected reaction monitoring (SRM) mode had detection limits (S/N = 3) of 15 and 3.75 pg, respectively. Good linearity of the calibration curves was obtained for tetrodotoxin (r = 0. 9996 and 0. 9998 in SIM and SRM mode, respectively). T he reproducibility was high in SIM mode but relatively poor in SRM mode. Based on the results, the method using HILIC column in SIM mode was suggested for the analysis of tetrodotoxin with LC-MS system.
Resumo:
Urinary 8-hydroxydeoxyguanosine (80HdG) has been considered as an excellent marker of individuals at high risk of developing cancer. Until now, urinary 80HdG has largely been measured by high-performance liquid chromatography with electrochemical detection. A new method for the analysis of urinary 80HdG by high-performance capillary electrophoresis has been developed and optimized in our laboratory. A single step solid-phase extraction procedure was optimized and used for extracting 80HdG from human urine. Separations were performed in an uncoated silica capillary (50 cm x 50 tm i.d.) using a P/ACE MDQ system with UV detection. The separation of 80HdG from interfering urinary matrix components is optimized with regard to pH, applied voltage, pressure injection time and concentration of SDS in running buffer. The detection limit of this method is 0.4 mug/ml, the linear range is 0.8-500 mug/ml, the correlation coefficients levels is better than 0.999. The developed method is simple, fast and good reproducibility, furthermore, it requires a very small injection volumes and low costs of analysis, which makes it possible to provide a new noninvasive assay for an indirect measurement of oxidative DNA damage.
Resumo:
A novel method of synthesizing protein chiral stationary phase (protein-CSP) is proposed with 2,4,6-trichloro-1,3,5-triazine as the activator. The bovine serum albumin (BSA) based chiral columns (150x4.6 mm I.D.) were prepared successfully within 8 h. With tryptophan as the probe solute, it was observed that the BSA immobilized by this method had a better ability to distinguish enantiomers than that activated by glutaric dialdehyde. This may be due to the well-maintained BSA conformation and the larger amount of BSA immobilized on the silica gel. The BSA-CSP prepared by this method was relatively stable under experimental conditions, and the resolution of 13 chiral compounds was achieved. The coupling reaction in this method is mild, reliable and reproducible; it is also suitable for the immobilization of various biopolymers in the preparation of bioreactor, biosensor and affinity chromatography columns. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The original cellulose fibers and those treated by alkaline solution were both used to prepare the acrylic membranes. The two kinds of membranes were packed into the columns for high-performance immunoaffinity chromatography by the immobilization of protein A on them. It was observed that the alkaline treatment of the cellulose fiber decreased the pressure resistance of the membrane to the mobile phases and greatly increased the accessible volume to the proteins, but affected the adsorption capacity of human IgG on the protein A membrane columns less. There is little difference between those two kinds of membranes on the adsorption capacities of HIgG, which means that the alkaline treatment of the cellulose fiber only significantly changes the void volume inter-membrane, and the porosity and surface area of membrane less. Alkaline treatment of the cellulose fiber reduced the membrane-column efficiency significantly. Some typical examples for the immunoaffinity analysis of IgG from human and dog plasma on the protein A membrane columns are illustrated. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Post-transcriptional modifications in RNA give rise to free modified ribonucleosides circulating in the blood stream and excreted in urine. Due to their abnormal levels in conjunction with several tumor diseases, they have been suggested as possible tumor markers. The developed RP-HPLC method has been applied to analyze the urinary nucleosides in 34 urinary samples from 15 kinds of cancer patients. The statistical analyses showed the urinary nucleoside excretion, especially modified nucleoside levels, in cancer patients were significantly higher than those in normal healthy volunteers. Factor analysis was used to classify the patients with cancer and normal healthy humans. It was found that using 15 urinary nucleoside levels or only five modified nucleoside levels as data vectors the factor analysis plot displayed two almost separate clusters representing each group. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
This paper describes the generation of pulsed, high-speed liquid jets using the cumulation method. This work mainly includes (1) the design of the nozzle assembly, (2) the measurement of the jet velocity and (3) flow visualization of the injection sequences. The cumulation method can be briefly described as the liquid being accelerated first by the impact of a moving projectile and then further after it enters a converging section. The experimental results show that the cumulation method is useful in obtaining a liquid jet with high velocity. The flow visualization shows the roles of the Rayleigh-Taylor and Kelvin-Helmholtz instabilities in the breakup of the liquid depend on the jet diameter and the downstream distance. When the liquid jet front is far downstream from the nozzle exit, the jet is decelerated by air drag. Meanwhile, large coherent vortex structures are formed surrounding the jet. The liquid will break up totally by the action of these vortices. Experimental results showing the effect of the liquid volume on the jet velocity are also included in this paper. Finally, a method for measuring the jet velocity by cutting two carbon rods is examined.