140 resultados para valence bands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically study the electronic structure, spin splitting, effective mass, and spin orientation of InAs nanowires with cylindrical symmetry in the presence of an external electric field and uniaxial stress. Using an eight-band k center dot p theoretical model, we deduce a formula for the spin splitting in the system, indicating that the spin splitting under uniaxial stress is a nonlinear function of the momentum and the electric field. The spin splitting can be described by a linear Rashba model when the wavevector and the electric field are sufficiently small. Our numeric results show that the uniaxial stress can modulate the spin splitting. With the increase of wavevector, the uniaxial tensile stress first restrains and then amplifies the spin splitting of the lowest electron state compared to the no strain case. The reverse is true under a compression. Moreover, strong spin splitting can be induced by compression when the top of the valence band is close to the bottom of the conductance band, and the spin orientations of the electron stay almost unchanged before the overlap of the two bands.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-spin states in 189Pt have been studied experimentally using the 176Yb(18O,5n) reaction at beam energies of 88 and 95 MeV. The level scheme of189Pt has been revised significantly and extended to high-spin states.Rotational bands have been analyzed in the framework of triaxial particle-rotor model, and a γ ≈−30◦triaxial shape and a near-prolate shape have been proposed to the νi−113/2 and νf5/2(p3/2) bands, respectively. Two ΔI = 2 transition sequences with similar energies have been observed, and they have been proposed to be associated with the νi−213/2νf5/2(p3/2) configuration. The structure built on the νi−213/2νf5/2(p3/2) configuration could be interpreted theoretical calculations of the triaxial particle-rotor model if a near-oblate shape is assumed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: