106 resultados para topological inaccuracy
Resumo:
The new topological indices A(x1)-A(x3) suggested in our laboratories were applied to the study of structure-property relationships between color reagents and their color reactions with yttrium. The topological indices of twenty asymmetrical phosphone bisazo derivatives of chromotropic acid were calculated. The work shows that QSPR can be used as a novel aid to predict the molar absorptivities of color reactions and in the long term to be helpful tool in-color reagent design. Multiple regression analysis and neural network were employed simultaneously in this study. The results demonstrated the feasibility and the effectiveness of the method.
Resumo:
It is necessary to generate automorphism group of chemical graph in computer-aided structure eluciation. In this paper, an algorithm is developed by all-path topological symmetry algorithm to build automorphism group of chemical graph. A comparison of several topological symmetry algorithm reveals that all-path algorthm can yield correct of class of chemical graph. It lays a foundation for ESESOC system for computer-aided structure elucidation.
Resumo:
The quantum chemical parameters and the topological indices have been calculated for the prediction of the toxicity of amino-benzenes in the environment, and work has been done on the multiple regression and neural networks. The combination of CoMFA with formation heat yields greatly improved results. A good model has been obtained which provides a basis for the studies of the toxic action mechanism.
Resumo:
Quantitative structure-retention relationship(QSRR) was studied for amines to gas-liquid chromatography on three stationary phases of different polarities with the topological indices A(m) (A(m1), A(m2), A(m3)) and gravitational index GI. The algorithm of "Leaps and Bounds" was performed for selection of the variables. And the multi-regression and the quasi-Newton neural networks were employed for the calculation with better results.
Resumo:
The A(m) index and molecular connectivity index were used for studying the photoionization sensitivity of some organic compounds in gas chromatography. The analysis of structure-property relationship between the photoionization sensitivity of the compounds and the A(m) indices or molecular connectivity indices has been carried out. The genetic algorighm was used to build the correlation model in this field. The results demonstrate that the property of compounds can be described by both A(m) indices and molecular connectivity indices, and the mathematical model obtained by the genetic algorithm was better than that by multivariate regression analysis.
Resumo:
In chemistry for chemical analysis of a multi-component sample or quantitative structure-activity/property relationship (QSAR/QSPR) studies, variable selection is a key step. In this study, comparisons between different methods were performed. These methods include three classical methods such as forward selection, backward elimination and stepwise regression; orthogonal descriptors; leaps-and-bounds regression and genetic algorithm. Thirty-five nitrobenzenes were taken as the data set. From these structures quantum chemical parameters, topological indices and indicator variable were extracted as the descriptors for the comparisons of variable selections. The interesting results have been obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Prediction of C-13-nuclear magnetic resonance chemical shifts for aliphatic amines is performed. The topological, geological and electronic descriptors are generated. To reduce the variables, the best subsets of the descriptors are obtained by using leaps-and-bounds regression analysis. The model is achieved using multiple regression with satisfactory results.
Resumo:
An alignment study of a liquid crystalline copolyether TPP-7/11(5/5) thin films has been carried out in a 10 kV . cm(-1) electrostatic field parallel to the thin film surface normal. This copolyether possesses a negative dielectric anisotropy. The chain molecules are homogeneously aligned in the electric field and they form two-dimensionally ordered lamellae in a tilted columnar phase when the samples were cooled to room temperature. It is observed that the chain molecules are splayed to form bent lamellae and the chain direction is perpendicular to the tangential direction of the lamellar surfaces. These lamellae thus become replicas of the chain orientation, Due to the flexoelectric effect and density fluctuation on the thin film free surface, disclinations having topological strength s = 1, c = pi /4 and defect walls form. These s = 1 disclinations possesses both left- and right-handednesses. Discussion of the defect formations have been attempted.
Resumo:
A new scheme for the code of chemical environments of compounds is described in this paper, and three molecular similarity methods have been used to select nearest neighbors from four different types of probe compounds. One of the methods is based on the C-13 NMR spectra. The second method is based on the code of chemical environments and molecular topological index A(x). The third approach, i.e. the Tanimoto coefficient, is also based on the code of chemical environments, but not to use the topological index. Five nearest neighbors for each probe compound using these three molecular similarity methods were determined and taken from the database of 7309 structures. The results indicate that the scheme of the chemical environment code and the method for similarity measure of intermolecules suggested in this study are reasonable. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A new topological index is devised from an all-paths method. This molecular topological index has highly discriminating power for various kinds of organic compounds such as alkane trees, complex cyclic or polycyclic graphs, and structures containing heteroatoms and thus can be used as a Molecular IDentification number (MID) for chemical documentation. Some published MIDs derived from an all-paths method and their structural selectivity for alkane trees are also reviewed.
Resumo:
Quantitative structure-activity/property relationships (QSAR/QSPR) studies have been exploited extensively in the designs of drugs and pesticides, but few such studies have been applied to the design of colour reagents. In this work, the topological indices A(x1)-A(x3) suggested in this laboratory were applied to multivariate analysis in structure-property studies. The topological indices of 43 phosphone bisazo derivatives of chromotropic acid were calculated. The structure-property relationships between colour reagents and their colour reactions with cerium were studied using A(x1-Ax3) indices with satisfactory results. The purpose of this work was to establish whether QSAR can be used to predict the contrasts of colour reactions and in the longer term to be a helpful tool in colour reagent design.
Resumo:
The synthesis and properties of simultaneously interpenetrating networks (SINs) based on poly(polyethylene glycol diacrylate) (PEGDA) and epoxy (diglycidyl ether of bisphenol A, DGEBA) were studied. The effect of compositional variation on the morphology and properties of products was investigated. The swelling coefficient, densities, glass transition behavior, and thermal stability of these interpenetrating networks (IPNs) are discussed. Microphase separation morphological structures were found in all PEGDA/DGEBA IPNs. Decreased swelling ratios compared to the calculated swelling coefficients based on the weight additivity of the components were obtained after the formation of IPNs. Increased density and thermal stability were also obtained in these IPNs, implying the existence of interpenetration (topological entanglements) among the component networks.
Resumo:
A quantitative structure-property study has been made on the relationship between molar absorptivities (epsilon) of asymmetrical phosphone bisazo derivatives of chromotropic acid and their color reactions with cerium by multiple regression analysis and neural network. The new topological indices A(x1) - A(x3) suggested in our laboratory and molecular connectivity indices of 43 compounds have been calculated. The results obtained from the two methods are compared. The neural network model is superior to the regression analysis technique and gave a prediction which was sufficiently accurate to estimate the molar absorptivities of color reagents during their color reactions with cerium.
Resumo:
In this paper, the new topological indices A(x1)-A(x3) suggested in our laboratory and molecular connectivity indices have been applied to multivariate analysis in structure-property studies. The topological indices of twenty asymmetrical phosphono bisazo derivatives of chromotropic acid have been calculated. The structure-property relationships between colour reagents and their colour reactions with ytterbium have been studied by A(x1)-A(x3) indices and molecular connectivity indices with satisfactory results. Multiple regression analysis and neural networks were employed simultaneously in this study.
STRUCTURE-PROPERTY RELATIONSHIP BETWEEN HALF-WAVE POTENTIALS OF ORGANIC-COMPOUNDS AND THEIR TOPOLOGY
Resumo:
A significant correlation was found between half-wave potentials of organic compounds and their topological indices, A(x1), A(x2), and A(x3). The simplicity of calculation of the index from the connectivity in the molecular skeleton, together with the significant correlation, indicates its practical value. Good results have been obtained by using them to predict the half-wave potentials of some organic compounds.