91 resultados para temperate
Resumo:
The species composition and abundance of microzooplankton at 10 marine and five coastal stations (Hongdao, Daguhe, Haibohe, Huangdao and Hangxiao) in the Jiaozhou Bay (Qingdao, China) were studied in 2001. The microzooplankton community was found to be dominated by Tintinnopsis beroidea, Tintinnopsis urnula, Tintinnopsis brevicollis and Cvdonellopsis sp. The average abundance of microzooplankton was highly variable among stations. Specifically, the abundance of microzooplankton was higher at inshore stations and lower in the center of the bay (St. 5), bay mouth (St. 9) and outside the bay (St. 10). The highest average annual densities (346 ind./L) was observed at St. 3, while the lowest (55 ind./L) was at St. 10. Two abundance peaks were recorded in May (324 ind./L) and February (300 ind./L). The distribution of microzooplankton in three sampling layers at the 10 stations was relatively homogenous and the abundance decreased slightly as the water depth increased. At coastal stations, the highest average annual density was recorded at Hongdao Station (677 ind./L), followed by Daguhe Station (616 ind./L), Haibohe Station (400 ind./L), Huangdao Station (275 ind./L) and Hangxiao Station (73 ind./L). Furthermore, a 24-h sampling analysis conducted at Hangxiao Station revealed that the microzooplankton assemblages were characterized by a bimodal diel vertical migration pattern, with the highest densities occurring at dusk (154 ind./L), followed by dawn (146 ind./L), noon (93 ind./L) and midnight (77 ind./L). The density of microzooplankton in the Jiaozhou Bay was in the middle range of the densities of temperate coastal waters worldwide.
Resumo:
In order to assess the toxicity of heavy metals on the early development of Meretrix meretrix, the effects of mercury (Hg), cadmium (Cd) and lead (Pb) on embryogenesis, survival, growth and metamorphosis of larvae were investigated. The EC50 for embryogenesis was 5.4 mu g l(-1) for Hg, 1014 mu g l(-1) for Cd and 297 mu g l(-1) for Pb, respectively. The 96 h LC50 for D-shaped larvae was 14.0 mu g l(-1) for Hg, 68 mu g l(-1) for Cd and 353 mu g l(-1) for Pb, respectively. Growth was significantly retarded at 18.5 mu g l(-1) (0.1 mu M) for Hg, 104 mu g l(-1) (1 mu M) for Cd and 197 mu g l(-1) (1 mu M) for Pb, respectively. The EC50 for metamorphosis, similar to 48 h LC50, was higher than 96 h LC50. Our results indicate that the early development of M. meretrix is highly sensitive to heavy metals and can be used as a test organism for ecotoxicology bioassays in temperate and subtropical regions.
Resumo:
Glass eels of the temperate anguillid species, Anguilla japonica, clearly showed a nocturnal activity rhythm under laboratory conditions. Light-dark cycle was a determinant factor affecting their photonegative behavior, nocturnal locomotor activity, and feeding behavior. Under natural light conditions, glass eels remained in shelters with little daytime feeding, but came out to forage during darkness. They moved and foraged actively in the following dark, and then their activity gradually declined possibly because of food satiation. They finally buried in the sand or stayed in tubes immediately after the lights came on. Under constant light, glass eels often came out of the shelters to forage in the lights but spent little time moving outside the shelters (e.g. swimming or crawling on the sand). Glass eels took shelter to avoid light and preferred tubes to sand for shelter possibly because tubes were much easier for them to take refuge in than sand. Feeding and locomotor activities of the glass eels were nocturnal and well synchronized. They appeared to depend on olfaction rather than vision to detect and capture prey in darkness. Feeding was the driving force for glass eels to come out of sand under constant light. However, in the dark, some glass eels swam or crept actively on sand even when they were fully fed. The lunar cycles of activity rhythms of glass eels that have been observed in some estuarine areas were not detected under these laboratory conditions.
Resumo:
N isotope fractionation (epsilon) was first determined during ambient NO3- depletion in a simulated diatom spring bloom. After 48 h of N-starvation, NH4+ was resupplied to the diatoms in small pulses to simulate grazer-produced N and then epsilon was determined. Large variations in epsilon values were observed: from 2.0-3.6 to 14-0 parts per thousand during NO3- and NH4+ uptake, respectively. This is the first study reporting an epsilon value as low as 0 to 2 parts per thousand for NH4+ uptake and we suggest that greater N demand after N-starvation may have drastically reduced NH3 efflux out of the cells. Thus the N status of the phytoplankton and not the ambient NH4+ concentration may be the important factor controlling epsilon, because, when N-starvation increased, epsilon values for NH4+ uptake decreased within 30 h. This study may thus have important implications for interpreting the delta(15)N of particulate N in nutrient-depleted regimes in temperate coastal oceans.
Resumo:
Precipitation is considered to be the primary resource limiting terrestrial biological activity in water-limited regions. Its overriding effect on the production of grassland is complex. In this paper, field data of 48 sites (including temperate meadow steppe,temperate steppe, temperate desert steppe and alpine meadow) were gathered from 31 published papers and monographs to analyze the relationship between above-ground net primary productivity (ANPP) and precipitation by the method of regression analysis. The results indicated that there was a great difference between spatial pattern and temporal pattern by which precipitation influenced grassland ANPP. Mean annual precipitation (MAP) was the main factor determining spatial distribution of grassland ANPP (r~2 = 0.61,P < 0.01); while temporally, no significant relationship was found between the variance of AN PP and inter-annual precipitation for the four types of grassland. However, after dividing annual precipitation into monthly value and taking time lag effect into account, the study found significant relationships between ANPP and precipitation. For the temperate meadow steppe, the key variable determining inter-annual change of ANPP was last August-May precipitation (r~2= 0.47, P = 0.01); for the temperate steppe, the key variable was July precipitation (r~2 = 0.36, P = 0.02); for the temperate desert steppe, the key variable was April-June precipitation (r~2 = 0.51, P <0.01); for the alpine meadow, the key variable was last September-May precipitation (r~2 = 0.29, P < 0.05). In comparison with analogous research, the study demonstrated that the key factor determining inter-annual changes of grassland ANPP was the cumulative precipitation in certain periods of that year or the previous year.
Resumo:
There are 47 genera and 161 species of Gramineae except the cultivated species in the area of the Karakorum and Kunlun Mountains. The results of research on the distribution of the genera and species of Gramineae in the Karakorum and Kunlun Mountains show that (1) The Gramineae mainly contains elements of North Temperate, rich Old Word Temperate and other Temperate. It is obvious that the floristic nature of Gramineae in the Karakorum and Kunlun Mountains is the North Temperate; (2) All Pantropic genera can stretch to the Temperate Zone in this region, which all parts of the Pantropic type are the Temperate nature to a certain degree. For example, Erianthus ravennae from mediterranean to the Karakorum and Kunlun Mountains through the Central Asia; (3) As most genera of Grasses are the type of Temperate and the Frigid Zone, they have distinct floristic characteristics of mountainous and plateau flora such as Orinus, Alopecurus, Elymus, Trisetum, Littledalea, Elytrigia, Stephanachne and Paracolpodium etc. All of these indicate adaptive phenomenon of alpine specialization and cold-xerophilization on Grasses in this area; (4) Endemic genus of Gramineae is absent due to its nature and history and the endemic species are also rare in the Karakorum and Kunlun Mountains. Most of the genera with one or fewer species have originated from its relative and widespread genera, such as Ptilagrostis from Stipa, Timouria from Achnatherum, and so on; (5) Flora of the Karakorum and Kunlun Mountains is most closely related to the flora of Tibet, and is also extensively to its adjacent areas.
Resumo:
Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.
Resumo:
To characterize evapotranspiration (ET) over grasslands on the Qinghai-Tibetan Plateau, we examined ET and its relevant environmental variables in a Kobresia meadow from 2002 to 2004 using the eddy covariance method. The annual precipitation changed greatly, with 554, 706, and 666 mm a(-1) for the three consecutive calendar years. The annual ET varied correspondingly to the annual precipitation with 341, 407, and 426 mm a(-1). The annual ET was, however, constant at about 60% of the annual precipitation. About 85% annual ET occurred during the growing season from May to September, and the averaged ET for this period was 1.90, 2.23, and 2.22 mm/d, respectively for the three consecutive years. The averaged ET was, however, very low (< 0.40 mm/d) during the nongrowing season from October to April. The annual canopy conductance (gc) and the Priestley-Taylor coefficient (a) showed the lowest values in the year with the lowest precipitation. This study first demonstrates that the alpine meadow ecosystem is characterized by a low ratio of annual ET to precipitation and that the interannual variation of ET is determined by annual precipitation.
Resumo:
Background and Aims Rheum, a highly diversified genus with about 60 species, is mainly confined to the mountainous and desert regions of the Qinghai-Tibetan plateau and adjacent areas. This genus represents a good example of the extensive diversification of the temperate genera in the Qinghai-Tibetan plateau, in which the forces to drive diversification remain unknown. To date, the infrageneric classification of Rheum has been mainly based on morphological characters. However, it may have been subject to convergent evolution under habitat pressure, and the systematic position of some sections are unclear, especially Sect. Globulosa, which has globular inflorescences, and Sect. Nobilia, which has semi-translucent bracts. Recent palynological research has found substantial contradictions between exine patterns and the current classification of Rheum. Two specific objectives of this research were (1) to evaluate possible relationships of some ambiguous sections with a unique morphology, and (2) to examine possible occurrence of the radiative speciation with low genetic divergence across the total genus and the correlation between the extensive diversification time of Rheum and past geographical events, especially the recent large-scale uplifts of the Qinghai-Tibetan Plateau.Methods The chloroplast DNA trnL-F region of 29 individuals representing 26 species of Rheum, belonging to seven out of eight sections, was sequenced and compared. The phylogenetic relationships were further constructed based on the sequences obtained.Key Results Despite the highly diversified morphology, the genetic variation in this DNA fragment is relatively low. The molecular phylogeny is highly inconsistent with gross morphology, pollen exine patterns and traditional classifications, except for identifying all samples of Sect. Palmata, three species of Sect. Spiciformia and a few species of Sect. Rheum as corresponding monophyletic groups. The monotypic Sect. Globulosa showed a tentative position within the clade comprising five species of Sect. Rheum. All of the analyses revealed the paraphyly of R. nobile and R. alexandrae, the only two species of Sect. Nobilia circumscribed by the possession of large bracts. The crude calibration of lineages based on trnL-F sequence differentiation implied an extensive diversification of Rheum within approx. 7 million years.Conclusions Based on these results, it is suggested that the rich geological and ecological diversity caused by the recent large-scale uplifts of the Qinghai-Tibetan Plateau since the late Tertiary, coupled with the oscillating climate of the Quaternary stage, might have promoted rapid speciation in small and isolated populations, as well as allowing the fixation of unique or rare morphological characters in Rheum. Such a rapid radiation, combined with introgressive hybridization and reticulate evolution, may have caused the transfer of cpDNA haplotypes between morphologically dissimilar species, and might account for the inconsistency between morphological classification and molecular phylogeny reported here.
Resumo:
The genus Saussurea is distributed mainly in the temperate and subarctic regions of Eurasia and consists of about 300 species classified into six subgenera and 20 sections. Sect. Pseudoeriocoryne in the subgenus Eriocoryne comprises four species, and is delimited mainly by acaulescence and an inflorescence with congested capitula surrounded by a rosette of leaves. All of these species are endemic to the and Qinghai-Tibet Plateau. Sequences from the chloroplast DNA trnL-F region were obtained for the four species in this section and 26 other species from four subgenera of Saussurea to resolve phylogenetic relationships among these species and to determine whether the shared characters that define sect. Pseudoeriocoryne are synapomorphic or were acquired by convergent evolution. The resulting phylogenies indicated that Saussurea sect. Pseudoeriocoryne as traditionally defined does not constitute a monophyletic group and that each of its species belongs to separate clades. Furthermore, none of these species showed a close relationship with the other species of subgenus Eriocoryne. Our results further indicated that none of the investigated subgenera are monophyletic, and that species from different subgenera clustered together. All these conclusions are provisional and their confirmation would require stronger phylogenetic support. Two possible explanations are suggested for low sequence divergence, poor resolution of internal clades and clustering of species with the rather distinct morphology of Saussurea detected in the present study. The first is rapid radiation and diversification triggered by fast habitat fragmentation due to the recent lifting of the Qinghai-Tibet Plateau and the Quaternary climate oscillations. This could have led to rapid morphological divergence while sequences diverged very little, and also caused the convergent acquisition of similar characteristics in unrelated lineages due to similar selection pressures. The second possible explanation is that both introgressive hybridization and reticulate evolution might have caused the transferring of cpDNA sequences between morphologically dissimilar species, thus leading to homogenization of sequences between lineages. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We measured the net ecosystem CO2 exchange (NEE) in an alpine meadow ecosystem (latitude 37degrees29'-45'N, longitude 101degrees12'-23'E, 3250 m above sea level) on the Qinghai-Tibetan Plateau throughout 2002 by the eddy covariance method to examine the carbon dynamics and budget on this unique plateau. Diurnal changes in gross primary production (GPP) and ecosystem respiration (R-e) showed that an afternoon increase of NEE was highly associated with an increase of R-e. Seasonal changes in GPP corresponded well to changes in the leaf area index and daily photosynthetic photon flux density. The ratio of GPP/R-e was high and reached about 2.0 during the peak growing season, which indicates that mainly autotrophic respiration controlled the carbon dynamics of the ecosystem. Seasonal changes in mean GPP and R-e showed compensatory behavior as reported for temperate and Mediterranean ecosystems, but those of GPP(max) and R-emax were poorly synchronized. The alpine ecosystem exhibited lower GPP (575 g C m(-2) y(-1)) than, but net ecosystem production (78.5 g C m(-2) y(-1)) similar to, that of subalpine forest ecosystems. The results suggest that the alpine meadow behaved as a CO2 sink during the 1-year measurement period but apparently sequestered a rather small amount of C in comparison with similar alpine ecosystems.
Resumo:
[1] The alpine meadow ecosystem on the Qinghai-Tibetan Plateau may play a significant role in the regional carbon cycle. To assess the CO2 flux and its relationship to environmental controls in the ecosystem, eddy covariance of CO2, H2O, and energy fluxes was measured with an open-path system in an alpine meadow on the plateau at an elevation of 3,250 m. Net ecosystem CO2 influx (Fc) averaged 8.8 g m(-2) day(-1) during the period from August 9 to 31, 2001, with a maximum of 15.9 g m(-2) day(-1) and a minimum of 2.3 g m(-2) day(-1). Daytime Fc averaged 16.7 g m(-2) day(-1) and ranged from 10.4 g m(-2) day(-1) to 21.7 g m(-2) day(-1) during the study period. For the same photosynthetic photon flux density (PPFD), gross CO2 uptake (Gc) was significantly higher on cloudy days than on clear days. However, mean daily Gc was higher on clear days than on cloudy days. With high PPFD, Fc decreased as air temperature increased from 10degreesC to 23degreesC. The greater the difference between daytime and nighttime air temperatures, the more the sink was strengthened. Daytime average water use efficiency of the ecosystem (WUEe) was 8.7 mg (CO2)(g H2O)(-1); WUEe values ranged from 5.8 to 15.3 mg (CO2)(g H2O)(-1). WUEe increased with the decrease in vapor pressure deficit. Daily albedo averaged 0.20, ranging from 0.19 to 0.22 during the study period, and was negatively correlated with daily Fc. Our measurements provided some of the first evidence on CO2 exchange for a temperate alpine meadow ecosystem on the Qinghai-Tibetan Plateau, which is necessary for assessing the carbon budget and carbon cycle processes for temperate grassland ecosystems.
Resumo:
The fluvio-lacustrine sequence in the Nihewan Basin is an important archive of late Pliocene-Pleistocene climate and environment changes in temperate northern China, which provides excellent sources of early human settlements in high latitude East Asia. The recent years have witnessed a considerable progress in the paleomagnetic dating of its stratigraphy, which has notably increased our understanding of a series of important issues such as the early human occupation in the Old World, the infilling history of the Nihewan Basin, and the chronological sequence of the Nihewan faunas. Up to now, the long-term paleoenvironmental changes directly retrieved from this basin, which might influence the evolution and expansion of early humans in the Nihewan Basin, are still poorly constrained, although several paleoclimatic records have been retrieved from this area. In this study, a combined mineral-magnetic and geochemical investigation was carried out on the fluvio-lacustrine sequence from the Dachangliang section at the eastern margin of the basin in order to reveal its rock magnetic and environmental magnetic characteristics and its implications for early human evolution in East Asia. The major findings and conclusions are listed as the following: First, there is an increased cooling coupled with an intensified aridification recorded in the fluvio-lacustrine sequence of the Dachangliang section. The cooling is related to an up-section decrease in propensity to chemical weathering as inferred from an increase in low-field susceptibility after cycling to 700 °C. Close to 700 °C, reacting chlorite is providing the iron source for newly formed very fine-grained ferrimagnetic minerals which enhances the susceptibility signal. The reactivity of chlorite after annealing at temperatures above 600 °C is documented with X-ray diffraction. Second, degrees of chemical weathering in the Nihewan Basin are further estimated by clay mineralogy (i.e. chlorite and illite contents and chlorite/illite ratio) and a series of major element proxies (i.e. Na2O/Al2O3 versus K2O/Al2O3 diagram, Al2O3-(CaO + Na2O)-K2O ternary diagram (A-CN-K), chemical index of alteration (CIA), (CaO + Na2O + MgO)/TiO2, (CaO + Na2O + MgO + K2O)/(TiO2 + Al2O3), CaO/Al2O3 and CaO/TiO2). The up-section decrease in propensity to chemical weathering suggested by the aforementioned rock mangetic measurement is further confirmed by these geochemical analyses. Combining the chemical weathering records from the Nihewan Basin, Chinese Loess Plateau, South China Sea and eastern China, we find that the consecutive decreasing trend in chemical weathering intensity during the late Cenozoic is ubiquitous across China. This pattern may result from a long-term decreasing East Asian summer monsoon and increasing East Asian winter monsoon, and thus a consecutive increasing of aridification and cooling in Asia during the Quaternary. Furthermore, the chemical weathering intensity increased from South China to North China during the Quaternary, in line with the decreasing East Asian summer monsoon and increasing East Asian winter monsoon and thus the gradually intensified aridification and cooling from South China to North China. Third, a combined mineral-magnetic and geochemical investigation provides evidences that the large-amplitude alterations of concentration of magnetic minerals mainly result from preservation/dissolution cycles of detrital magnetic minerals in alternately oxic and anoxic depositional environments. The preservation/dissolution model implies that the high-magnetic and low-magnetic cycles of this sedimentary sequence represent glacial and interglacial climate cycles, respectively. This contribute significnatly to our understanding of the link between climate and magnetic properties. Finally, the paleoclimatic implications of these rock magnetic and geochemical characteristics significantly increase our understanding of the general setting of early humans in high northern latitude in East Asia. We propose that the cold and dry climate may have contributed significantly to the expansion and adaptation of early humans, rather than bringing hardship, as is often thought. The relationship between magnetic properties and climate possibly provides valuable information on the climatic context of the Paleolithic sites in the basin, especially whether the occupation occurred during an interglacial or glacial period.
Resumo:
Recently, more and more attention has been paid to stable isotope ratios in terrestrial depositional systems. Among them, δ~(13)C value is mainly determined by the surface vegetation, while vegetation is directly related to climate, therefore, carbon isotope ratio in soil organic matter and pedogenic carbonate has been employed as an important paleoecological indicator. In order to test the paleoecological information extracted from stable isotope ratios in terrestrial depositional systems, it is necessary to study the relationships between δ~(13)C value in standing terrestrial plants and today climate, as well as between δ~(13)C value in modern surface soil organic matter and standing vegetation. Thus, these relationships were studied in this paper by means of analysing δ~(13)C in standing plants and modem surface soil organic matter in North China. The main results and conclusions are presented as following: 1. According to their δ~(13)C values, 40 C-4 species represent about 16% of the 257 plant species sarnpled from the North China. C-4 photosynthesis mainly occurs in Poaceae, Cyperaceae and Chenopidaceae families, and percentage representation of C-4 photosynthesis is up to 56% in Poaceae family. 2. The δ~(13)C values of C-3 plant species in North China vary from -21.7‰ to -32.0‰ with an average of -27.1‰, and 93% focus on the range of -24.0‰ ~ -30.0‰; δ~(13)C values of C-4 plant species in North China are between -10.0‰ ~ -15.5‰ with an average of -12.9‰, and 90% concentrate on the range of -11.0‰ ~ -15.0‰. 3. The δ~(13)C composition of C-3 plant species collected from Beijing, a semi-moist district, mainly vary between -27.0‰ ~ -30.0‰, and the average is -28.7‰; the δ ~(13)C values of plants in the semi-arid district, east and west to the Liu Pan Moutain, focus on the range of-26.0‰ ~ -29.0‰ and -25.0‰ ~ -28.0‰, respectively, with the mean value of -27.6‰ and -26.6‰, respectively; the δ~(13)C composition in the arid district dominantly vary from -24.0‰ to -29.0‰, with the average of -26.2‰, and among them, the δ~(13)C values of C-3 plant species in deserts are often between - 22‰ ~ -24‰; the δ~(13)C values in the cold mountain district concentrate on the range of -24.0‰ to -29.0‰, with the average of -26.3‰. 4. The main range of δ~(13)C composition of C-4 plant species, derived from Beijing, a semi-moist district, are -13.0‰ ~ -15.5‰; the semi-arid district, -11.0‰ ~ -14.0‰; the arid district, -11.0‰ ~ -14.0‰. The mean values of them are -14.0‰, -12.4‰,-12.7‰, respectively. 5. From east to west in North China, δ~(13)C values of C-3 plant species increase with longitude. The correlation between δ~(13)C ratios of C-3 plant species and longitude is linear. Changing temperate and precipitation and changing atmosphere pressure are spossible explanations. 6. Almost all C-3 plant species have the trends that their δ~(13)C values gradually increase with decreasing precipitation, decreasing temperature and increasing altitude. Our results show the increases of the δ~(13)C value by 0.30 ~ 0.45‰, 0.19 ~ 0.27‰ and 1.1 ~ 1.2‰ per 100 mm, I℃ and 1000 m, respectively, for all C-3 plant species together. 7. The δ~(13)C values of all C-3 plant species together and a part of C-3 species show highly significant linear correlation with the mean annual temperature, the mean annual precipitation and the altitude, and the results suggest that they can be used as proxies of these environmental variables, while, those without highly significant correlation, may be not suitable as the proxies. 8. The extent, which of responses of δ~(13)C composition to environmental variables, is different for each C-3 plant specie. 9. The δ~(13)C variations along altitude and longitude may be non-linear for C-4 p1ant species in North China. The mean annual temperature may be not important influential factor, thus, it suggests that the δ~(13)C composition of C-4 plant species may be not suitable as the proxy of the mean annual temperature. The influences of summer temperature on δ~(13)C values are much bigger than that of annual temperature, among them, the influence of September temperature is biggest. The mean annual precipitation may be one of the dominant influential factors, and it shows a highly significant non-linear relationship with δ~(13)C values, and the result indicates that δ~(13) C composition of C-4 plant species can be employed as the proxy of the mean annual precipitation. 10. The variations of δ~(13)C ratios do not show systematic trends along longitude, latitude and altitude for modern surface soil organic in Northwest China. ll. The δ~(13)C ratios of modern surface soil organic do not exhibit systematic patterns with temperature and precipitation in Northwest China, it suggests that, unless soil organic is transferred from pure C-3 or C-4 vegetation, the δ~(13)C composition of soil organic may be not used as proxies of climatic variables. 12. The δ~(13)C values of modem surface soil organic are heavier than that of standing vegetation, and the difference ofrnean δ~(13)C between them is -2.18‰. 13. Without considering the δ~(13)C difference between vegetation and soil organic, as well as the δ~(13)C drift in various enviromnent, we may not obtain the valuable information of C-3, C-4 relative biomass in vegetation. 14. The C-4 biomass contribution in vegetation increase with decreasing latitude, increasing longitude and decreasing altitude in Northwest China. The C-4 biomass almost are zero in those regions north to 38 ° N, or west to 100°E, or above 2400 m. 15. The C-4 relative biomass in vegetation increase with growing temperature and precipitation. and, C-4 plants are rare at those regions where the mean annual temperature is less 4 ℃, or the mean annual precipitation is less 200 mm, and their biomass contribution in vegetation are almost zero. Both the mean annual temperature and the mean annual average precipitation may be the important influential factors of C-4 distribution, but the dominant factors.
Resumo:
In Asia continent, several significant environmental events happened during the Cenozoic era, such as uplift of the Tibet Plateau, formation of the Asian Monsoon system, aridification of the temperate inland region in Central Asia. To investigate the history of long-term palaeoclimate evolution during the late Cenozoic, a lacustrine sequence located at Sikouzi, Guyuan county, Ningxia-Hui Autonomous Region, was studied. The Sikouzi section is about 2880 m in thickness and has a general continuous nature according to field observation. Thus this thick lacustrine record is an important archive to further understand those environmental events. In this study, detailed field measurement, layer-after-layer description and sampling, and magnetostratigraphy and palynoflora investigations are conducted at the Sikouzi section and some preliminary results have been achieved as follows. Based on Hipparion fauna, pollen data and long distinctive patterns of the local magnetozones, the confident correlation of the Sikouzi magnetostratigraphic polarity to the GPTS (CK95) is best established, indicating that the top boundary of the Sikouzi formation is dated back to -19.8 Ma B.P. and consequently no Oligocene sediments deposited locally. On the other hand, both the field observation and the correlation to GPTS indicate a nearly continuous nature for the whole sequence. The palynological results show that the grassland has been a dominant vegetation in the Sikouzi area since ~19.8 Ma B.P, although some trees/shrubs were present sparsely during the intervals of relatively warm and wet climatic conditions. This implies that the onset of the aridification in northwestern China is dated back to at least 19.8 Ma B.P. ago. The Neogene Global Climatic Optimum (-16.0 Ma B.P.) occurring between the late Early Miocene and the early Middle Miocene is well documented in the Shanwang formation, Shandong Province. However, such event was not found in the Sikouzi record, and neither in the Guide and the Hualong basins, Qinghai province. This may lead us to the conclusion that the East-Asian Summer Monsoon system remained weak during the period of the Miocene Climatic Optimum although the onset of it was traced back to the Early Oligocene. In the Sikouzi area, it was warm between the latest Miocene and the early Pliocene and then became cool in the late Pliocene. This pattern is consistent with the palaeoclimate record of the Pliocene from other areas in the world.