110 resultados para teaching room diagram
Resumo:
The hydrodehalogenation of aromatic halides, catalyzed by Pd/C in aqueous solutions, yields arenes in short reaction times at room temperature under normal pressure. The nature of the solvents has an important influence on the reaction rates and the activity of the catalyst. The catalyst shows the highest activity in water. In the hydrodechlorination of 4-chlorohypnone, it was in water that C-Cl bond was easier to be hydrogenated, and in isopropanol that C=O was easier to be hydrogenated. (C) 2004 Elsevier B.V. All rights reserved.
Flow-through room temperature phosphorescence optosensing for the determination of lead in sea water
Resumo:
The chelates formed between the heavy metal ion Pb(II) and the reagents 8-hydroxy-5-quinolinesulphonic acid, 8-hydroxy-7-quinolinesulphonic acid and 8-hydroxy-7-iodo-5-quinolinesulphonic acid exhibit strong room temperature phosphorescence (RTP) if retained on the surface of anion exchange resin beads. Based on the on-line formation, in a flow-injection system, of such RTP lead chelates and their transient immobilization on an anion exchange resin, three flow-through optosensing systems are investigated for lead in sea water. Optimum experimental conditions and the analytical performance characteristics of the three optosensors are discussed. Relative standard deviations (RSDs) of the order of 3% are typical at 100 ng ml−1 Pb(II) and the active sensing phases can easily be regenerated by passing 500 μl of 6 M hydrochloric acid. A lead(II) detection limit of 0.1 ng ml−1 (3×background SD, for 2 ml sample injection volumes) was achieved for the optosensor based on 8-hydroxy-7-quinolinesulphonic acid. Possible interferences present in sea water, including cations and anions which could affect the sensor response, are discussed in detail. Finally, the selected RTP flow-through optical sensor has been successfully tested for the determination of lead in sea water at a few ng ml−1.
Resumo:
A facile phospholipid/room-temperature ionic liquid (RTIL) composite material based on dimyristoylphosphatidylcholine (DMPC) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) was exploited as a new matrix for immobilizing protein. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were adopted to characterize this composite film. Hemoglobin (Hb) was chosen as a model protein to investigate the composite system. UV-vis absorbance spectra showed that Hb still maintained its heme crevice integrity in this composite film.
Resumo:
Initially, pore walls of mesoporous silica SBA-15 with template were modified with chlorotrimethylsilane. Then imidazolium salts were similarly incorporated covalently in the inner pore walls of mesoporous silica SBA-15 albeit without the template. Finally, palladium salts were introduced into the pore channels of the previously processed mesoporous silica via electrostatic interaction. The resulting palladium catalysts demonstrated exceptional activity for the room-temperature Suzuki Coupling reaction in aqueous-organic mixed solvents and good recycling ability for at least 4-6 times.
Resumo:
We describe an aggregation-based growth mechanism for formation of silver nanowires at room temperature. It is found that the pH of solution and the concentration of L-cysteine capping molecules have an important effect on the formation and growth of nanowires. Characterization by atomic force microscopy (AFM) and UV-vis spectroscopy recorded as time clearly shows that the silver nanowires are grown at the expense of nanoparticles.
Resumo:
The facile, rapid, and effective synthesis of coordination polymer La(1,3,5-BTC)(H2O)(6) has been realized via direct precipitation at room temperature. It is found that the crystal structure is of monoclinic, space group Cc. The doped Eu3+ or Tb3+ ions samples have the same phase and exhibit red and green emissions under UV light excitation, respectively.
Resumo:
In this study, binodal curves and tie line data of [Amim]Cl + salt (K3PO4, K2HPO4, K2CO3) + water aqueous biphasic systems (ABS) were measured and correlated satisfactorily with the Merchuk equation and Othmer-Tobias and Bancroft equations, respectively. [Amim]Cl could be recovered from aqueous solutions using the ABS, and the recovery efficiency could reach 96.80%. The recovery efficiency was influenced by the concentrations of the salts and their Homeister series: K3PO4 > K2HPO4 > K2CO3. Our method provides a new and effective route for the recovery of hydrophilic IL using [Amim]Cl + salt + water ABS from aqueous solutions.
Resumo:
By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymer systems, the micro-phase morphologies of the H-shaped (AC)B(CA) ternary block copolymer system are studied in three-dimensional (3D) space. By systematically varying the volume fractions of the components A, B, and C, six triangle phase diagrams of this H-shaped (AC)B(CA) ternary block copolymer system with equal interaction energies among the three components are constructed from the weaker segregation regime to the strong segregation regime, In this study, thirteen 3D micro-phase morphologies for this H-shaped ternary block copolymer system are identified to be stable and seven 3D microphase morphologies are found to be metastable.
Resumo:
The structural evolution of an ice-quenched high-density polyethylene (HDPE) subjected to uniaxial tensile deformation at elevated temperatures was examined as a function of the imposed strains by means of combined synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) techniques. The data show that when stretching an isotropic sample with the spherulitic structure, intralamellar slipping of crystalline blocks was activated at small deformations, followed by a stress-induced fragmentation and recrystallization process yielding lamellar crystallites with their normal parallel to the stretching direction. Stretching of an isothermally crystallized HDPE sample at 120 degrees C exhibited changes of the SAXS diagram with strain similar to that observed for quenched HDPE elongated at room temperature, implying that the thermal stability of the crystal blocks composing the lamellae is only dependent on the crystallization temperature.
Resumo:
The large-scale synthesis of the metal-organic framework Eu(1,3,5-BTC)center dot 6H(2)O nanocrystallites with delicate morphologies such as sheaflike, butterflylike, and flowerlike superstructures composed of nanowires have been realized via a simple solution phase method at room temperature. Time-dependent experiments indicate that these superstructures were constructed by the splitting crystal growth mechanism, as has been noted in some minerals in nature. The synthetic parameters such as reaction time, concentration and molar ratio of reactants, surfactant, and reaction temperature all affected the morphology of the Eu(1,3,5-BTC)center dot 6H(2)O architectures. These well-arranged architectures exhibit red emission corresponding to the D-5(0) -> F-7(2) transition of the Eu3+ ions under UV light excitation, and the lifetime is determined to be about 0.22 ms.
Resumo:
The separation of Sc(III) from Y(III), La(III) and Yb(III) in [C(8)mim][PF6] containing Cyanex 925 has been investigated, and is reported in this paper. A cation exchange mechanism of Sc(III) in [C(8)mim][PF6] and Cyanex 925 is proposed by study of the influence of anionic and cationic species on the extraction. The coefficient of the equilibrium equation of Sc(III) was confirmed by slope analysis of log D-Sc vs log [Cyanex 925], and the loading capacity also confirmed the stoichiometry of Cyanex 925 to Sc(III) was close to 3:1. Infrared data for Cyanex 925 saturated with Sc(III) in [C(8)mim][PF6] indicated strong interaction between P=O of Cyanex 925 and Sc(III). In addition, the relationship between log D-Sc and temperature showed that temperature had little influence on the extraction process, and the resulting thermodynamic parameters indicated that an exothermic process was involved.
Resumo:
Phase diagrams corresponding to aqueous biphasic systems of salt (the organic ionic liquid of salts [C(4)mim]Cl, [C(6)mim]Cl, and [C(8)mim]Cl) + salt (K3PO4, K2CO3) + water were determined at 298.15 K. The binodal curve was fitted to the Merchuk equation. Tie lines assigned from mass phase ratios according to the lever arm rule were satisfactorily described using the Othmer-Tobias and Bancroft equations.