77 resultados para swimming speed


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With using short capillary column packed with porous and non-porous ODS stationary phases, high speed separation of 6 neutral aromatic compounds within 36 s by capillary electrochromatography (CEC) has been performed. Good reproducibility of the migration times for those solutes in high speed CEC was observed with RSD less than 1%. Both the linear velocity of EOF and the current linearly increases with the applied voltage, which means that the thermal effect by Joule heating was small. However, the capacity factor of solutes was found to decrease with the increase of the applied voltage, which was caused by the fact that about several seconds needed for the increase of voltage from 0 to applied value on a commercial CE instrument made larger contributions to the migration times of the early eluted compounds than those of lately eluted ones during high speed CEC, and voltage effect would increase with the higher applied voltage used. The linear relationship between the logarithm of capacity factor and the number of carbon for homologous compounds was observed, and positive value of slope means that the hydrophobicity of solutes is one of the main contribution factors to retention in high speed CEC packed with ODS stationary phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new mesoporous sphere-like SBA-15 silica was synthesized and evaluated in terms of its suitability as stationary phases for CEC. The unique and attractive properties of the silica particle are its submicrometer particle size of 400 nm and highly ordered cylindrical mesopores with uniform pore size of 12 nm running along the same direction. The bare silica particles with submicrometer size have been successfully employed for the normal-phase electrochromatographic separation of polar compounds with high efficiency (e.g., 210 000 for thiourea), which is matched well with its submicrometer particle size. The Van Deemeter plot showed the hindrance to mass transfer because of the existence of pore structure. The lowest plate height of 2.0 mu m was obtained at the linear velocity of 1.1 mm/s. On the other hand, because of the relatively high linear velocity (e.g., 4.0 mm/s) can be generated, high-speed separation of neutral compounds, anilines, and basic pharmaceuticals in CEC with C-18-modified SBA-15 silica as stationary phases was achieved within 36, 60, and 34 s, respectively.