82 resultados para stars : magnetic fields


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ordinary differential magnetic field line equations are solved numerically; the tokamak magnetic structure is studied on Hefei Tokamak-7 Upgrade (HT-7U) when the equilibrium field with a monotonic q-profile is perturbed by a helical magnetic field. We find that a single mode (m, n) helical perturbation can cause the formation of islands on rational surfaces with q = m/n and q = (m +/- 1, +/- 2, +/- 3,...)/n due to the toroidicity and plasma shape (i.e. elongation and triangularity), while there are many undestroyed magnetic surfaces called Kolmogorov-Arnold-Moser (KAM) barriers on irrational surfaces. The islands on the same rational surface do not have the same size. When the ratio between the perturbing magnetic field B-r(r) and the toroidal magnetic field amplitude B(phi)0 is large enough, the magnetic island chains on different rational surfaces will overlap and chaotic orbits appear in the overlapping area, and the magnetic field becomes stochastic. It is remarkable that the stochastic layer appears first in the plasma edge region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the electromagnetic spatital distributions and address an important issue of the transmission properties of spherical transverse-electric (TE) and transverse-magnetic (TM) eigenmodes within a tapered hollow metallic waveguide in detail. Explicit analytical expressions for the spatital distributions of electromagnetic field components, attenuation constant, phase constant and wave impedance are derived. Accurate eigenvalues obtained numerically are used to study the dependences of the transmission properties on the taper angle, the mode as well as the length of the waveguide. It is shown that all modes run continuously from a propagating through a transition to an evanescent region and the value of the attenuation increases as the distance from the cone vertex and the cone angle decrease. A strict distinction between pure propagating and pure evanescent modes cannot be achieved. One mode after the other reaches cutoff in the tapered hollow metallic waveguide as the distance from the cone vertex desreases. (C) 2008 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated magnetic properties of laterally confined structures of epitaxial Fe films on GaAs (001). Fe films with different thicknesses were grown by molecular-beam epitaxy and patterned into regular arrays of rectangles with varying aspect ratios. In-plane magnetic anisotropy was observed in all of the patterned Fe films both at 15 and 300 K. We have demonstrated that the coercive fields can be tuned by varying the aspect ratios of the structures. The magnitudes of the corresponding anisotropy constants have been determined and the shape anisotropy constant is found to be enhanced as the aspect ratio is increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A metal-encapsulating silicon fullerene, Eu@Si-20, has been predicted by density functional theory to be by far the most stable fullerene-like silicon structure. The Eu@Si-20 structure is a dodecahedron with D-2h symmetry in which the europium atom occupies the center site. The calculated results show that the europium atom has a large magnetic moment of nearly 7.0 Bohr magnetons. In addition, it was found that a stable "pearl necklace" nanowire, constructed by concatenating a series of Eu@Si-20 units, with the central europium atom, retains the high spin moment. The magnetic structure of the nanowire indicates potential applications in the fields of spintronics and high-density magnetic storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is,found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlet-triplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We End that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy spectrum and the persistent currents are calculated for a finite-width mesoscopic annulus with radial potential barrier, threading a magnetic flux through the hole of the ring. Owing to the presence of tunneling barrier, the coupling effect leads to the splitting of each radial energy subband of individual concentrical rings into two one. Thus, total currents and currents carried by single high-lying eigenstate as a function of magnetic flux exhibit complicated patterns. However, periodicity and antisymmetry of current curves in the flux still preserve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xVxN4 (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Nitrogenation leads to a relative volume expansion of about 6%. The lattice constants and unit cell volume decrease with increasing rare-earth atomic number from Nd to Dy, reflecting the lanthanide contraction. On average, the Curie temperature increases due to the nitrogenation to about 200 K compared with its parent compound. Generally speaking, nitrogenation also results in a remarkable improvement of the saturation magnetization and anisotropy fields at 4.2 K and room temperature for R3Fe29-xVxN4 compared with their parent compounds. The transition temperature indicates the spin reorientations of R3Fe29-xVxN4 for R = Nd and Sm are at around 375 and 370 K which are higher than that of R3Fe29-xVx, for R = Nd and Sm 145 and 140 K, respectively. The magnetohistory effects of R3Fe29-xVxN4 (R = Ce, Nd, and Sm) are observed in low fields of 0.04 T. After nitrogenation the easy magnetization direction of Sm3Fe26.7V2.3 is changed from an easy-cone structure to the b-axis. As a preliminary result, a maximum remanence B-r of 0.94 T, an intrinsic coercivity mu(0)H(C) of 0.75 T, and a maximum energy product (B H)(max) of 108.5 kJ m(-3) for the nitride magnet Sm3Fe26.7V2.3N4 are achieved by ball-milling at 293 K.