411 resultados para slab laser amplifier


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have demonstrated a 1.60 mu m ridge-structure laser diode and electroabsorption modulator monolithically integrated with buried-ridge-structure dual-waveguide spot-size converters at the input and output ports for low-loss coupling to a cleaved single-mode optical fibre by means of selective area growth and asymmetric twin waveguide technologies. The devices emit in single transverse and quasi-single longitudinal modes with a side mode suppression ratio of 25.6 dB. These devices exhibit 3 dB modulation bandwidth of 15.0 GHz and modulator extinction ratios of 14.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7.3 degrees x 10.6 degrees, respectively, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel 1.55 mum laser diode (LD) with monolithically integrated spot-size converter (SSC) is designed and fabricated using conventional photolithography and the chemical wet etching process. For the laser diode, a ridge double-core structure is employed. For the spot-size converter, a buried double-waveguide structure is incorporated. The laterally tapered active core is designed and optically combined with the thin passive core to control the size of the mode. The threshold current was measured to be 40 mA together with high slope efficiency of 0.35 W A(-1). The beam divergence angles in the horizontal and vertical directions were as small as 14.9degrees and 18.2degrees, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1.55-mum laser diode integrated with a spot-size converter was fabricated in a single step epitaxial by using the conventional photolithography and chemical wet etching process. The device was constructed by a conventional ridge waveguide active layer and a larger passive ridge-waveguide layer. The threshold current was 40 mA together with high slope efficiency of 0.24 W/A. The beam divergence angles in the horizontal and vertical directions were as small as 12.0degrees x 15.0degrees, respectively, resulting in about 3.2-dB coupling losses with a cleaved optical fibre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of air-holes, and a waveguide. In the cavity, laser resonance in the inner structure benelits from not only the anomalous dispersion characteristic of the first band-edge at the M point in the first Brillouin-zone but also zero photon states in the outer structure. A line defect waveguide is introduced in the outer structure for extracting photons from the inner cavity. Three-dimensional finite-difference time-domain simulations apparently show the in-plane laser output from the waveguide. The microcavity has an effective mode volume of about 3.2(lambda/eta(slab))(3) for oscillation -mode and the quality factor of the device including line defect waveguide is estimated to be as high as 1300.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The guide mode whose frequency locates in the band edge in photonic crystal single line defect waveguide has very low group velocity. So the confinement and gain of electromagnetic field in the band edge are strongly enhanced. Photonic crystal waveguide laser is fabricated and the slow light phenomenon is investigated. The laser is pumped by pulsed pumping light at 980nm whose duty ratio is 0.05%. The active layer in photonic crystal slab is InGaAsP multiple quantum well. Light is transimited by a photonic crystal chirp waveguide in one facet of the laser. Then the output light is coupled to a fiber and the character of laser is analysis by an optical spectrometer. It is found that single mode and multimode happens with different power of pumping light. Meanwhile the plane wave expansion and finite-difference time-domain methods are used to simulate the phenomenon of slow light. And the result of the experiment is compared with the theory which proves the slow light results in lasing oscillation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a home-made seed at 1053 nm from a Yb3+-doped passively mode-locked fiber laser of 1.5 nJ/pulse, 362 ps pulse duration with a repetition rate of 3.842 MHz, a compact, low cost, stable and excellent beam quality non-collinear chirped pulse optical parametric amplifier omitting the bulky pulse stretcher has been demonstrated. A gain higher than 4.0 x 10(6), single pulse energy exceeding 6 mJ with fluctuations less than 2% rms, 14 nm amplified signal spectrum and recompressed pulse duration of 525 fs are achieved. This provides a novel and simple amplification scheme. (c) 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel high-energy, single-mode, all-fiber-based master-oscillator-power-amplifier (MOPA) laser system operating in the C-band with 3.3-ns pulses and a very widely tunable repetition rate, ranging from 30 kHz to 50 MHz. The laser with a maximum pulse energy of 25 mu J and a repetition rate of 30 kHz is obtained at, a wavelength of 1548 nm by using a double-clad, single-mode, Er:Yb co-doped fiber power amplifier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 40-GHz wavelength tunable mode-locked fiber ring laser based oil cross-gain modulation in a semiconductor optical amplifier (SOA) is presented. Pulse trains with a pulse width of 10.5 ps at 40-GHz repetition frequency are obtained. The laser operates with almost 40-nm tuning range. The relationship between the key laser parameters and the output pulse characteristics is analyzed experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An actively mode-locked fiber ring laser based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is demonstrated to operate stably with a simple configuration. By forward injecting an easily-generated external pulse train, the mode-locked fiber laser can generate an optical-pulse sequence with pulsewidth about 6 ps and average output power about 7.9 mW. The output pulses show an ultra-low RMS jitter about 70.7 fs measured by a RF spectrum analyzer. The use of the proposed forward-injection configuration can realize the repetition-rate tunability from I to 15 GHz for the generated optical-pulse sequences. By employing a wavelength-tunable optical band-pass filter in the laser cavity, the operation wavelength of the designed SOA-based actively mode-locked fiber laser can be tuned continuously in a wide span between 1528 and 1565 nm. The parameters of external-injection optical pulses are studied experimentally to optimize the mode-locked fiber laser. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a novel technique to broaden and reshape the spectrum of picosecond laser pulse based on the seeder of gain switch laser diode and Yb(3+)-doped fiber amplifier (YDFA). From compensating the seed spectrum with the gain of YDFA, the seed pulse of 7 nm bandwidth is broadened to 20 nm, and the flat top spectral shape is obtained as well. A self-made fiber coupled tunable filter is used to realize the tunable output laser with the wavelength range from 1053 nm to 1073 nm and the line width of 1.4 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A flash-lamp-pumped Nd

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a simple approach to generate a high quality 10 GHz 1.9 ps optical pulse train using a semiconductor optical amplifier and silica-based highly nonlinear fiber. An optical pulse generator based on our proposed scheme is easy to set up with commercially available optical components. A 10 GHz, 1.9 ps optical pulse train is obtained with timing jitter as low as 60 fs over the frequency range 10 Hz-1 MHz. With a wavelength tunable CW laser, a wide wavelength tunable span can be achieved over the entire C band. The proposed optical pulse generator also can operate at different repetition rates from 3 to 10 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical behaviors and frequency characteristics of an active mode-locked laser with a quarter wave plate (QWP) are numerically studied by using a set pf vectorial laser equation. Like a polarization self-modulated laser, a frequency shift of half the cavity mode spacing exists between the eigen-modes in the two neutral axes of QWP. Within the active medium, the symmetric gain and cavity structure maintain the pulse's circular polarization with left-hand and right-hand in turn for each round trip. Once the left-hand or right-hand circularly polarized pulse passes through QWP, its polarization is linear and the polarized direction is in one of the directions of i45o with respect to the neutral axes of QWP. The output components in the directions of i45" from the mirror close to QWP are all linearly polarized with a period of twice the round-trip time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polarization self-modulation effect in a free oscillated Nd:YAG laser is investigated after a quarter wave plate is introduced independently in the two positions of the cavity. As described in the previous experiments, the intensity components in the orthogonal directions are modulated with a period of the round-trip time or twice. Different pulse shapes reveal that the seed field from the spontaneous emission is not uniform and seems to be stochastic for each pulse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel composite coating was synthesized by laser alloying of zirconium nanoparticles on an austenite stainless steel surface using a pulsed Nd:YAG laser. The coating contained duplex microstructures comprising an amorphous phase and an austenitic matrix. A discontinuous zirconium-containing region formed at a depth of 16 mum below the surface. The amorphous phase was present in the zirconium-rich region, with the composition of zirconium ranging from 7.8 to 14.5 at. pet. The formation of the amorphous phase was attributed to the zirconium addition. The hardness, corrosion, and wear-corrosion resistance of the irradiated coating were evidently enhanced compared to those of the stainless steel.