141 resultados para single-layer graphene


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spontaneous emission properties of a single layer organic film in plane optical microcavities were studied. Optical microcavity was formed by a Tris(8-quinolinolato) aluminium (Alq) film sandwiched between a distributed Bragg reflector (DBR) and a Ag metallic reflector. Two kinds of microcavities were devised by using a different DBR structure. Compared with a Alq film, significantly spectral narrowing and intensity enhancement was observed in the two microcavities, which is attributed to the microcavity effect. The spectra characteristics of the two microcavities showed that the structure of DBR has much influence on the emission properties of a microcavity. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of alternating copolymers containing triphenylamine (TPA) moieties and oligomeric PPV segments in the main chain have been synthesized by Wittig condensation. The resulting polymers exhibit good thermal stability with decomposition temperatures (Tds) above 305 degreesC under nitrogen at 10 degreesC/min, and high glass transition temperatures (Tgs). They show intense photoluminescence in solution and film. The single-layer electroluminescent device using TAA-PV1 as emissive layer emits green light at 522nm with a turn-on voltage of 6V and maximum brightness of about 200cd/m(2) at 20V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A soluble polymer emitting green color with high efficiency was synthesized. Bright green electroluminescence devices, both single layer and multilayer, were fabricated. The luminous efficiency was improved dramatically. Carrier injection from the electrodes to the emissive layer and concomitant green electroluminescence from the emissive layer were observed. A luminance of 920 cd/m(2) and luminous efficiency of 5.35 1m/W were achieved at a drive voltage of 15 V for the multilayer device. (C) 1997 Elsevier Science S.A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the production tail of oilfield, water-cut is very high in thick channel sand oil reservoir, but recovery efficiency is relative low, and recoverable remaining oil reserves is more abundant, so these reserves is potential target of additional development. The remaining oil generally distributed with accumulation in certain areas, controlled by the reservoir architecture that mainly is the lateral accretion shale beddings in the point bar, so the study of reservoir architecture and the remaining oil distribution patterns controlled by architecture are very significant. In this paper, taking the Minghuazhen formation of Gangxi oilfield as a case, using the method of hierarchy analysis, pattern fitting and multidimensional interaction, the architecture of the meandering river reservoir is precisely anatomized, and the remaining oil distribution patterns controlled by the different hierarchy architecture are summarized, which will help to guide the additional development of oil fields. Not only is the study significant to the remaining oil forecasting, but also it is important for the theory development of reservoir geology. With the knowledge of sequence correlation and fluvial correlation model, taking many factors into account, such as combination of well and seismic data, hierarchical controlling, sedimentary facies restraint, performance verification and 3-D closure, an accurate sequence frame of the study area was established. On the basis of high-resolution stratigraphic correlation, single layer and oil sand body are correlated within this frame, and four architecture hierarchies, composite channel, single channels, point bars and lateral accretion sandbody are identified, The result indicates that Minghuazhen Formation of Gangxi oilfield are dominated by meandering river deposition, including two types of channel sandbodies, narrow band and wide band channel sandbody, and each of them has different characteristics of facies variation laterally. Based on the identification of composite channel, according to the spatial combination patterns and identified signs of single channel, combined with channel sandbody distribution and tracer material data, single channel sandbodies are identified. According to empirical formula, point-bar scales of the study area are predicted, and three identification signs are summarized, that is, positive rhythm in depositional sequence, the maximum thick sand and near close to the abandoned channel, and point bars are identified. On the basis of point bar recognition, quantitative architecture models inner point bar are ascertained, taking the lateral accretion sand body and lateral accretion shale beddings in single well as foundation, and quantitative architecture models inner point bar as guidance, and result of tracer material data as controlling, the the lateral accretion sand body and lateral accretion shale beddings are forecasted interwell, so inner architecture of point bar is anatomied. 3-D structural model, 3-D facies model and 3-D petrophysical properties models are set up, spatial distribution characteristics of sedimentary facies and petrophysical properties is reappeared. On the basis of reservoir architecture analysis and performance production data, remaining oil distribution patterns controlled by different hierarchy architecture units, stacked channel, single channel and inner architecture of point bar, are summarized, which will help to guide the additional development of oil fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the deeply development of exploration and development in petroleum in China, new increasing reserves are found in old oil fields and the verge of the old ones through re-study of geological property. It is more and more important to discovery and develop thin layer or thin inter-bedded layers reservoirs. All of the targets are thin sand-shale inter-bedded reservoirs and the core technology is reservoir predictions between wells in thin sand-shale inter-bedded layers. The continuity of the thin sand-shale inter-bedded layers in space or separating and heterogeneity is the key of reservoir geology research. The seismic reflection, high resolution analysis method and inversion method to thin sand-shale inter-bedded layers are thorough discussed and deeply studied in this paper to try to find the methods and resolutions of reservoir geology research. The below is followed. 1. Based on the pre-research of other people, five models are created: the sand sphenoid body, interlay sandstone and interlay shale of the equal thickness, interlay sandstone of the equal thickness and interlay shale of the unequal thickness, interlay sandstone of the unequal thickness and interlay shale of the unequal thickness, interlay sandstone of the changing thickness in sequence and interlay shale of the changing thickness in sequence. Then the study of the forward modeling are conducted on the thin layer and thin inter-bedded layers geological characters and seismic reflections including amplitude, frequency, phase, wave shape and time-frequency responding in the domains of time and frequency. The affect of petro-physics difference of layers, single thin layer thickness, thickness of inter-bedded, layer number of inter-bedded, incident wavelet domain frequency and types, sample interval to seismic reflection characters, frequency spectrum and time-frequency respond of reflectivity is theoretically discussed. 2. Qualitatively analyzing the sedimentary rhythm of the thin inter-bedded layers in vertical orientation and computing the single layer thickness or the average thickness with the method of generalized S transform. Identifying the reflecting interface or lithology interface using the amplitude value of amplitude spectrum domain frequency. 3. Based on the seismic respond of thin sand-shale inter-bedded layers, bring out the high resolution analysis method of seismic data in thin sand-shale inter-bedded layers using wavelet analysis and the idea of affecting low and high frequency with middle frequency. Then analyzing the effect to the method and testing some wavelets in the method. This method is applied to the theoretical models and the field data. 4. Bring forward one improved very fast simulated annealing method (IVFSA) to resolve the problem nonlinearity and multi-parameters of the inversion in thin inter-bedded layers. And IVFSA is more productive and higher precision than general ways. 5. New target constrained function is used in the inversion based on the property of the inversion in thin inter-bedded layers. 6. Making the full use of geological and logging information, IVFSA and the new function are applied in the non-linear inversion to improve reservoir prediction and evaluation in thin inter-bedded formations combined with the idea of logging and seismic inversion. This method was applied to the field data and got good results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The past three decades have seen numerous attempts to numerically model stress and strain patterns in the lithosphere of the Earth on both global and regional scales. This efforts have been indispensable in identifying the features we need to include in our endeavour to develop better models of our planet’s lithosphere and they have also raised our awareness for the many unresolved issue in the deep geodynamical issues that need to be addressed in the future. Nonetheless, in most models, the lithosphere is treated as a single layer with depth-averaged properties, and as the same distribution in the stress and strain fields, and as deforming under plane strain. All these above make a great hander for its reality and degree of recognition. As the beginning in this paper, some principal numerical models and results on the evolution of Tibetan plateau are reviewed and analyzed. Then, the geological and geophysical expedition on the Western Himalayan Syntaxis is briefly reviewed. Furthermore, we analysis the feature in deep geophysical field studies in this area and adjacent regions. Because, for most continents, stress models driven by plate boundary forces have successfully reproduced the main characteristics of the stress and strain field, we present a set of three-dimensional models of lithosphere system for a simplified geometry of the Western Himalayan Syntaxis area and its adjacent regions, where we try to match the first-order characteristics of the stress and strain fields of lithosphere since 10 Ma, and deformation and geodynamical evolution process in former 2Ma. Of course, the kinematic boundary conditions of the stress models driven by plate boundary forces were applied. The rheology plays a significant role in the lithospheric tectonics, which lead to different rheological parameters were used in different works although the have the same constitutive equations in models. So, in this paper we do not aim to produce all characteristics of the Western Himalayan Syntaxis areas’ stress and strain fields by the choices of various parameters, but rather the dynamic response between various rheological parameters and stress and strain fields. We have chosen to concentrate on the importance of rheology and lateral strength variations for lithospheric stress and strain patterns and use our findings to build a model of the Western Himalayan Syntaxis areas. In doing so, we want to go beyond purely elastic models or purely viscoelastic models. Compared the results of the crust viscosity in the Western Himalayan Syntaxis areas, we believed that, when various viscoelastic models are adopted, the selection of the coefficient of viscosity in the Western Syntaxis area has important influence on the its uplifts and evolutions. A wider uplift ranges and gently elevation was observed at the same time when a lower viscosity was used in our models, and vice versa. Data of stress magnitudes are not available, but it is clear that the stress levels must be at or below the failure threshold of rock under compression. Under these criteria, the calculation results show that the viscosity in the Western Syntaxis area should be smaller than 1023Pa.s When elastic model is adopted in relatively rigid Tarim basin, obvious changes are induced to the stress and strain fields of the whole Western Syntaxis area. We found that rigid block of lithosphere reduced stress levels within its interior and that, at the edges of such regions, stress orientation can change. Furthermore there is no evidence that such rigid regions act as stress barriers in that they shield areas in opposite sides of the structure from the influence of one another. In our models, the upper crustal material of the Western Syntaxis area does not turns to move westward. Whereas, because of the stress and strain fields have been decoupling at the interior of the lithosphere, we can get the results that the deep material must not move westward.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When used in the determining the total electron content (TEC), which may be the most important ionospheric parameter, the worldwide GPS observation brings a revolutionary change in the ionospheric science. There are three steps in the data processing to retrieve GPS TEC: (1) to estimate slant TEC from the measurements of GPS signals; (2) to map the slant TEC into vertical; and (3) to interpolate the vertical TEC into grid points. In this scientific dissertation we focus our attention on the second step, the mapping theory and method to convert slant TEC into vertical. This is conventionally done by multiplying on the slant TEC a mapping function which is usually determined by certain models of electron density profile. Study of the vertical TEC mapping function is of significance in GPS TEC measurement. This paper first reviews briefly the three steps in GPS TEC mapping process. Then we compare the vertical TEC mapping function which were respectively calculated from the electron density profiles of the ionospheric model and retrieved from the observation of worldwide GPS TEC. We also perform the statistical analysis on the observational mapping functions. The main works and results are as follows: 1. We calculated the vertical TEC mapping functions for both SLM and Chapman models, and discussed the modulation of the ionosphere height to the mapping functions. We use two simple models, single layer model (SLM) and Chapman models, of the ionospheric electron density profiles to calculate the vertical TEC mapping function. In the case of the SLM, we discuss the control of the ionospheric altitude, i.e., the layer height hipp, to the mapping function. We find that the mapping function decreases rapidly as hipp increases. For the Chapman model we study also the control mapping function by both ionospheric altitude indicated by the peak electron density height hmF2, and the scale height, H, which present the thickness of the ionosphere. It is also found that the mapping function decreases rapidly as hmF2 increases. and it also decreases as H increases. 2. Then we estimate the mapping functions from the GPS observations and compare them with those calculated from the electron density models. We first, proposed a new method to estimate the mapping functions from GPS TEC data. This method is then used to retrieve the observational mapping function from both the slant TEC (TECS) provided by International GPS Service (IGS)and vertical TEC provide by JPL Global Ionospheric Maps (GIMs). Then we compare the observational mapping function with those calculated from the electron density models, SLM and Chapman. We find that the values of the observational mapping functions are much smaller than that from the model mapping functions, when the zenith angle is large enough. We attribute this to the effect of the plasmasphere which is above about 1000 km. 3. We statistically analyze the observational mapping functions and reveal their climatological changes. Observational mapping functions during 1999-2007 are used in our statistics. The main results are as follows. (1) The observational mapping functions decrease obviously with the decrement of the solar activity which is represented by the F10.7 index; (2) In annual variations of the observational mapping functions, the semiannual component is found at low-latitudes, and the remarkable seasonal variations at mid- and high-latitudes. (3) The diurnal variation of the observational mapping functions is that they are large in daytime and small at night, they become extremely small in the early morning before sunrise. (4) The observational mapping functions change with latitudes that they are smaller at lower latitudes and larger at higher. All of the above variations of the observational mapping functions are explained by the existence of the plasmasphere, which changes more slowly with time and more rapidly with latitude than the ionosphere does . In summary, our study on the vertical TEC mapping function imply that the ionosphere height has a modulative effect on the mapping function. We first propose the concept of the 'observational mapping functions' , and provide a new method to calculate them. This is important in improving the TEC mapping. It may also possible to retrieving the plasmaspheric information from GPS observations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the great development of Tianjing New Coastal District economy, people need more land to build and live. Land subsidence, which is caused by its special engineering geological conditions, has restricted the further development in the district. Soft soil consolidation is main factor of land subsidence ;thus , on the basis of consolidation theory, the paper make further study on soft soils one-dimension nonlinear consolidation which contains two parts:(1) the nonlinear consolidation of permeability coefficient and compressibility coefficient changing with time and depth, which means real one-dimension nonlinear consolidation;(2) the non-homogeneous consolidation of permeability coefficient and compressibility coefficient only changing with depth. Firstly, nonlinear characteristics of soft soils are elaborated. Hypoplastic theory is introduced to establish a modified soft soils nonlinear constitutive model; the nonlinear governing equation of compressibility coefficient is built, and the nonlinear characteristics of compressibility coefficient are analyzed. Secondly, Considering Load Fluctuation and soil thickness changing ,the consolidation characteristics of single layer is discussed in the paper; meanwhile, on the basis of the Davis and Raymond’s hypothesis and single layer nonlinear consolidation equation, the doubled-layer one-dimension nonlinear consolidation equation is also derived. The solution of the equation is obtained by analytical method, and the consolidation characteristics of doubled-layer soft soil nonlinear theory is also analyzed. Finally, based on assumption that permeability coefficient and compressibility coefficient is varying along depth, single layer soil one-dimension non-homogeneous consolidation differential equation is derived; and the approximate solution is obtained. Furthermore, the single layer non-homogeneous consolidation is extended to double layer non-homogeneous consolidation theory. By using parabolic differential scheme, the matrix equation is established; and the solution of the matrix equation is obtained by chase method. Consolidation characteristics of soil soft single (double) layer non-homogeneous consolidation theory and Terzaghi’s theory are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the study of fluvial sandstone reservoir in upper of Guantao group in Gudao and Gudong oilfields, this paper first introduces A.D.Miall's(1996a) architectural-element analysis method that was summarized from ground outcrop scale into the reservoir formation research of the study area, more subtly divides sedimentary microfacies and establishes sedimentary model of research area.on this base, this paper summarizes the laws of residual oil distribution of fluvial formation and the control effect of sedimentary microfacies to residual oil distribution, and reveals residual oil formation mechanism. These results have been applied to residual oil production, and the economic effect is good. This paper will be useful for residual oil research and production and enhancement of oil recovery in similar reservoir. The major conclusions of this paper are as follows. 1. Using the architectural-element analysis method to the core data, a interfacial division scheme of the first to the dixth scale is established for the studied fluvial formation. 2.Seven architectural-elements are divided in upper of Guantao group of study area. The sandstone group 5~1+2 of Neogene upper Gutao group belongs to high sinuous fine grain meandering river, and the sandstone group 6 is sandy braided river. 3. Inter layer, the residual oil saturation of "non-main layer" is higher than "main layer", but the residual recoverable reserve of former is larger. Therefore, "main layer" is the main body of residual oil distribution. The upper and middle part of inner layer has lower permeability and strong seeping resistance. Addition to gravity effect in process of driving, its driving efficiency is low; residual oil saturation is high. Because of controlling of inside non-permeable interlayer or sedimentary construction, the residual oil saturation of non-driving or lower driving efficiency position also is high. On plane, the position of high residual oil saturation mostly is at element LV, CS, CH (FF), FF etc, Which has lower porosity and permeability, as well as lens sand-body and sand-body edge that is not controlled by well-net, non-perfect area of injection and production, lower press difference resort area of inter-well diffiuent-line and shelter from fault, local high position of small structure. 4.Microscopic residual oil mainly includes the non-moved oil in the structure of fine pore network, oil in fine pore and path, oil segment in pore and path vertical to flow direction, oil spot or oil film in big pore, residual oil in non-connective pore. 5.The most essential and internal controlling factor of fluvial formation residual oil distribution is sedimentary microfacies. Status of injection and production is the exterior controlling factor of residual oil distribution. 6. The controlling effect of formation sedimentary microfacies to residual oil distribution indicates inter-layer vertical sedimentary facies change in scale of injection and production layer-series, planar sedimentary face change and inner-layer vertical sedimentary rhythm and interbed in single layer to residual oil distribution. 7. It is difficult to clear up the inter-layer difference in scale of injection and production layer-series. The using status of minor layer is not good and its residual oil saturation is high relatively. It is obvious that inter-layer vertical sedimentary facies changes control inter-layer residual oil distribution at the same or similar conditions of injection and production. For fluvial formation, this vertical sedimentary facies change mainly is positive gyration. Namely, from down to top, channel sediment (element CHL, LA) changes into over-bank sediment (element LV, CR, CS). 8. In water-injection developing process of transverse connecting fluvial sandstone oil formation, injection water always comes into channel nearby, and breaks through along channel and orientation of high pressure gradient, does not expand into side of channel until pressure gradient of channel orientation changes into low. It brings about that water-driving status of over-bank sedimentary element formation (LV, CR, CS) is not good, residual oil saturation is high. In non-connective abandoned channel element (CH) formation with channel, because this reverse is difficult to control by injection and production well-series, its using status is not good, even terribly not good, residual oil is enrichment. 9. The rhythm and sedimentary structure, sedimentary facies change in single sand body brings about vertical changes of formation character, growth character of inner layer interbed. These are important factor of controlling and affecting vertical water spread volume and inner layer residual oil forming and distribution in single sand body. Positive rhythm, is the principal part of fluvial sandstone inner layer sedimentary rhythm. Namely, from down to upside, rock grain granularity changes from coarse to fine, seeping ability changes from strong to feebleness. It brings about that water-driving status of inner layer upside is not good, residual oil saturation is high. Inner layer interbed has different degree affecting and controlling effect to seeping of oil and water. Its affecting degree lies on interbed thickness, extending scale, position, and jeted segment of production or injection well. The effect of interbed at upside of oil formation to oil and water seeping is less; the effect of interbed at middle of oil formation to oil and water seeping is more. 10. Indoor experiment and research indicate that wettability, permeability step, vertical permeability, position of Kmax and ratio of oil viscousity and water viscousity all have great effect on the water-driving recovery ratio. 11. Microscopic residual oil distribution is affected and controlled by formation pore network structure, pressure field distribution, and oil characteristic. 12.The residual oil forming mechanism: the over-bank sedimentary element and upper part of a positive rhythm sandstone have fine pore and throat network, permeability is low, displacement pressure of pore and throat is high. The water-driving power usually falls short of displacement pressure that brings about injection water does not spread into these pore and throat network, thereby immovable oil area, namely residual oil, is formed. At underside of channel sedimentary element and positive rhythm sandstone, porosity and permeability is relatively high, connecting degree of pore and throat is high, displacement pressure of pore and throat is low. Thereby injection water is easy to enter into pore and throat, driving oil in them. Because the pore space is irregular, the surface of pore wall is coarse and non-flat. That the oil locate on concave hole of pore wall and the dead angle of pore, and the oil attaches on surface of pore wall by surface tension, are difficult to be peeled off, becoming water-driving residual oil (remaining oil). On the other hand, Because flowing section lessens, flowing resistance increase, action of capillary fore, or seeping speed decreases at process of transfer at pass narrow throat path in the course carried by driving water. The "oil drop", "oil bead", or "oil segment" peeled off by driving water is difficult to carry and to drive out by water at less pressure difference. Thereby they are enclosed in pore to form discontinuous residual oil. 13.This results described above have been applied in nine develop blocks of Gudao and Gudong oilfield. Its applying effect is marked through local injection production adjustment, deploying replacement well, repair hole, replacement envelop, block off water and profile control etc. Relative method and technology can be applied to other oil production area of Shengli oilfield, and obtain better economic and societal effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim at the variousness and complexity of the spatial distribution of Remaining Oil in the fluvial and delta facies reservoir in paper. For example, in the La-Sa-Xing oilfield of Daqing, based on the research of the control factor and formation mechanization of block, single layer, interlayer and micromechanism, synthesizing the theories and methods of geology, well logging, reservoir engineering, artificial intelligence, physical simulation test , and computer multidisciplinary; Fully utilizing the material of geology, well logging, core well, dynamic monitor of oil and water well, and experimental analysis, from macro to micro, from quality to quantity, from indoor to workplace, we predicted the potentiality and distribution according to the four levels of Block, single layer, interlayer and micromechanism, and comprehensively summarized the different distribution pattern of remaining oil in the fluvial and delta facies reservoir This paper puts forward an efficient method to predict the remaining recoverable reserves by using the water flooding characteristic curve differential method and neutral network; for the first time utilizes multilevel fuzzy comprehensive judgment method and expert neutral network technology to predict the remaining oil distribution in the single layer? comprehensively takes advantage of reservoir flowing unit, indoor physical simulation test, inspection well core analysis and well-logging watered-out layer interpretation to efficiently predict the distribution of remaining oil; makes use of core analysis of different periods and indoor water driving oil test to study the micro distribution of remaining oil and the parameters varying law of reservoir substance properties, rock properties, wetting properties. Based on above, the remaining oil distribution predicting software is developed, which contains four levels of block, single layer, interlayer and micromechanism. This achievement has been used inLa-Sa-Xing oil field of Daqing and good results have been received.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The symmetry group analysis is applied to classify the phonon modes of N-stacked graphene layers (NSGLs) with AB and AA stacking, particularly their infrared and Raman properties. The dispersions of various phonon modes are calculated in a multilayer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the interlayer interactions in NSGLs. The experimentally reported redshift phenomena in the layer-number dependence of the intralayer optical C-C stretching mode frequencies are interpreted. An interesting low-frequency interlayer optical mode is revealed to be Raman or infrared active in even or odd NSGLs, respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate theoretically the Hartman effect in quantum tunneling through single and double barriers in a single graphene layer. The numerical results indicate that the Hartman effect in graphene depends heavily on the incident angle and the energy of the carrier in the tunneling process through single and double barriers. We find that the Hartman effect disappears for normal incidence and appears when the incident angle and energy are larger than some critical values.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Imaginary-distance beam propagation method under the perfectly matched layer boundary condition is applied to judge single-mode behaviour of optical waveguides, for the first time to our knowledge. A new kind of silicon-on-insulator-based rib structures with half-circle cross-section is presented. The single-mode behaviour of this kind of waveguide with radius 2mum is investigated by this method. It is single-mode when the slab height is not smaller than the radius.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal-optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases These results reveal that there is a large built-in electric field in the well layer and the exciton-LO phonon coupling is strongly affected by the thickness of the cap layer

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The tunneling from an AlGaAs confined thin layer to a GaAs layer in the GaAs/Al0.33Ga0.67As/GaAs structure during the trapped electron emission from deep level in the AlGaAs to its conduction band has been observed by deep level transient spectroscopy. With the aid of the tunneling effect, the conduction-band offset DELTAE(c) was determined to be 0.260 eV, corresponding to 63% of DELTAE(g). A calculation was also carried out based on this tunneling model by using the experimental value of DELTAE(c) = E2 - E1 = 0. 260 eV, and good agreement between the experimental and calculated curves is obtained.