81 resultados para sex differentiation
Resumo:
Myeloid differentiation factor 88 (MyD88) is a universal and essential adapter for the TLR/IL-1R family. In this report, the first mollusk Myd88 ortholog (named as CfMyd88) was cloned from Zhikong scallop (Chlamys farreri). The full-length cDNA of CfMyd88 was of 1554 bp, including a 5 '-terminal untranslated region (UTR) of 427 bp, a polyA tail, and an open reading frame (ORF) of 1104 bp encoding a polypeptide of 367 amino acids containing the typical TLR and IL-1R-related (TIR) domain and death domain (DD). Homology analysis revealed that the predicted amino acid sequence of CfMyd88 was homologous to a variety of previously identified Myd88s with more than 30% identity. The temporal expressions of CfMyd88 mRNA in the mixed primary cultured haemocytes stimulated by lipopolysaccharide (LPS) and peptidoglycans (PGN) were measured by real-time RT-PCR system. The mRNA expression of CfMyd88 decreased after stimulation with both LPS and PGN, and the lowest level was about 1/3 times (at 6 h) and 1/10 times (at 9 h) to that in the control group, respectively. The expression then recovered and was upregulated to two-fold at 9 h after LPS stimulation or to the original level at 12 It after PGN stimulation. The results suggest that the MyD88-dependent signaling pathway exists in scallop and was involved in the defense system. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Pacific white shrimp (Litopenaeus vannamei) is the leading species farmed in the Western Hemisphere and an economically important aquaculture species in China. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP) and microsatellite markers. One hundred and eight select AFLP primer combinations and 30 polymorphic microsatellite markers produced 2071 markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 319 were mapped to 45 linkage groups of the female framework map, covering a total of 4134.4 cM; and 267 markers were assigned to 45 linkage groups of the male map, covering a total of 3220.9 cM. High recombination rates were found in both parental maps. A sex-linked microsatellite marker was mapped on the female map with 6.6 cM to sex and a LOD of 17.8, two other microsatellite markers were also linked with both 8.6 cM to sex and LOD score of 14.3 and 16.4. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map, quantitative trait loci (QTLs) detection, marker-assisted selection (MAS) and comparative genome mapping.
Resumo:
A species-specific SCAR marker for rainbow trout, which was used to detect adulteration and fraudulent labeling in Atlantic salmon products, has been developed based on the AFLP analysis and evaluated in this study. The SCAR marker could be amplified and visualized in 1% agarose gel in all tested rainbow trout samples and absent in all salmon samples. Using DNA admixtures, the detection of 1% (0.5 ng), 10% (5 ng) rainbow trout DNA in Atlantic salmon DNA for fresh and processed samples, respectively was readily achieved. The molecular approach was sensitive and demonstrated to be a rapid and reliable method for identifying frauds in salmon products and could be extended for applications of species identification in food industry.
Resumo:
本文采用组织学手段研究了牙鲆性腺在分化、发育和成熟过程中的变化。然后,通过放射性免疫方法(RIA)测定了牙鲆仔稚幼鱼全组织匀浆液中的性类固醇激素—睾酮(T)和雌二醇(E2)的含量,并结合牙鲆血清中T和E2含量的年周期测定,从内分泌学水平探讨了T和E2在其性腺分化、发育和成熟过程中水平的变化规律。同时,采用高温和雌性激素对性腺未分化的普通和雌核发育牙鲆仔稚鱼进行诱导处理,获得了较高比例的雄性鱼/假雄鱼或100%雌性鱼;并研究了这些外界环境因子对牙鲆性腺分化、性别比率及体内T和E2水平的影响,藉此探讨了牙鲆性别决定与性腺分化的细胞学和内分泌学机制。 对牙鲆仔稚幼鱼性腺的组织切片观察发现,培育水温18~20℃下,孵化后第45天、平均全长<22.0±2.8 mm的牙鲆,其性腺分化尚未开始,属于原始性腺;在孵化后70日龄、平均全长为38.0±1.7 mm左右,部分个体中观察到卵巢的雏形,其余个体的性腺在此阶段以及之后的一段时间内变化并不明显;到了第110天、平均全长达到86.5±5.9 mm时,雌性个体卵巢出现了卵原细胞向卵母细胞的转变,标志着卵巢分化的结束。在90日龄、平均全长为63.5±3.4 mm的雄性牙鲆中,精原细胞快速增殖,并观察到了输精管结构;进一步的细胞学分化则出现在100日龄、平均全长为76.0±8.6 mm的个体中,此时可以看到精小叶的形成;在平均全长为140.0±15.2 mm时,精巢中出现初级精母细胞,标志着性腺分化的基本完成。 对牙鲆仔稚幼鱼全组织匀浆和成鱼血清中的T和E2水平的比较发现,在全长为6 mm左右的仔鱼中T和E2含量均较高。随后,在性腺分化过程中T含量大大降低,E2的含量急剧增高,而性腺分化后期E2含量又降到较低的水平。在雄性牙鲆成鱼中, 从精巢第Ⅲ期开始,T含量随着精巢的发育而增加,到了精巢第Ⅴ期性腺发育成熟并排精后,又降低到较低的水平;E2含量在从精巢第Ⅲ期发育至精巢第Ⅴ期过程中略呈降低的趋势,但是总体上来说没有明显的差异。在雌性牙鲆成鱼中,卵巢从第Ⅱ期到第Ⅳ期的过程中,T水平逐渐升高,在第Ⅴ期时则明显降低;而E2含量在卵巢第Ⅱ期时保持较低的水平,随着卵巢的发育,E2含量逐渐增高,在卵巢第Ⅳ期时达到最高水平,在第Ⅴ期产卵后又有所降低。在雌雄个体中T和E2均呈现周期性的变化。5月份随着水温的升高,雄性个体T和E2含量显著上升;到了9月份又逐渐下降至最低值。雌性个体E2含量自3月份开始增高,在5月份急剧升高,并在6月份达到最高值;在7月份的时候,E2突然降低,而到了8月份又有所回升;9月份之后E2逐渐降低并在1月份左右降到最低;而T的含量分别在2月份和6月份出现两次高峰。 温度诱导牙鲆幼鱼性腺分化的结果表明,牙鲆中存在明显的TSD机制,即其性腺分化因饲育水温的不同而变化:在一定温度范围内,随着饲育温度的增加,牙鲆的雄性比例逐渐增高,常温对照组和21℃组中的雄性比例分别为51.62%、60.00%,而在24℃和28℃高温组中,雄性比例显著高于对照组,分别达到73.33%和87.27%。T和E2含量测定显示,在性腺分化时期,高温和对照组中T含量没有明显的变化,而温度处理组中的E2水平则低于对照组,特别是在28℃高温组,其E2水平显著低于对照组(P<0.05)。外源E2处理性腺未分化的牙鲆幼鱼的结果也表明,牙鲆的死亡率与雌性化比率均为雌性激素剂量依赖型的。随着外源E2剂量的增加,雌性比率增加,但同时死亡率也增高。此期间T和E2水平比较发现,在性腺分化时期,对照组中的T含量稍高于雌激素处理组;而对照组中的E2含量高于0.2 ppm和2 ppm两个低剂量组,却低于20 ppm和100 ppm两个高剂量组。 同时,还对人工诱导培育的雌核发育牙鲆和性反转牙鲆进行了性腺发育观察,在所观察的雌核发育牙鲆个体中,其雌性比例为83.33%,而高温28℃饲育群体中的雄性比例(即假雄鱼比例)为91.67%;在雌性个体中,也有一定比例的个体性腺发育不正常,有的性腺发育较小,有的则缺少部分性腺。进一步对雌核发育成体的血清中T和E2含量进行测量,发现在普通牙鲆个体中T含量显著低于雌核发育个体,而E2含量则高于雌核发育牙鲆;在雌核发育牙鲆中,性腺发育不正常的个体比性腺发育正常的个体中的T含量稍高,而E2含量则显著低于正常雌核发育牙鲆个体和普通牙鲆个体(P< 0.05)。
Resumo:
A total of 449 plateau pika (Ochotona curzoniae Hudgson) individuals were sampled with rattraps from 21 plots (size 1 ha) randomly scattered over the area of the species distribution at the altitude 3275-4807 in a.s.l. in the Qinghai-Tibetan Plateau (West China). Two main ectoparasite species Hypoderma satyrus Brauer and Ixodes crenulatus Neumann of plateau pika were surveyed, and the relations between host sex and parasitism were analyzed. The results were: (i) although not significantly, the infection rate of female young was close to zero and lower than that of male young (6%), while the infection rate of female sub-adults (19%) was contrarily - higher than that of male sub-adults (11%); adult females had significantly higher (41%) infection rate than that of males (18%) (P<0.001); (ii) the parasite infection rates for both males and females increased with increasing age, but female age-groups had obviously steeper slope. We suggested that the differences of body mass, growth rate and home range between males and females had mainly caused the sex-biased parasitism (SBP) of plateau pika at each age stage. Also, due to the higher increases of body mass and maybe as well as of the home range differences between consecutive age-groups, the parasite infections of females became more sensitive to the influences of age than that of males.