138 resultados para re-offence
Resumo:
Phosphors CaYBO4:RE3+ (RE = Eu, Gd, Tb, Ce) were synthesized with the method of solid-state reaction at high temperature, and their vacuum ultraviolet (VUV)-visible luminescent properties in VUV-visible region were studied at 20 K. In CaYBO4, it is confirmed that there are two types of lattice sites that can be substituted by rare-earth ions. The host excitation and emission peaks of undoped CaYBO4 are very weak, which locate at about 175 and 350-360nm, respectively. The existence of Gd3+ can efficiently enhance the utilization of host absorption energy and result in a strong emission line at 314 nm. In CaYBO4, Eu3+ has typical red emission with the strongest peak at 610 nm; Tb3+ shows characteristic green emission, of which the maximum emission peak is located at 542 nm. The charge transfer band of CaYBO4:Eu3+ was observed at 228 nm; the co-doping of Gd3+ and Eu3+ can obviously sensitize the red emission of Eu3+. The fluorescent spectra of CaYBO4:Ce3+ is very weak due to photoionization; the co-addition of Ce3+-Tb3+ can obviously quench the luminescence of Tb3+.
Resumo:
LiBa2B5O10:RE3+ (RE = Dy, Tb and Tm) was synthesized by the method of high-temperature solid-state reaction and the thermoluminescence (TL) properties of the samples under the irradiation of the gamma-ray were studied. The result showed that Dy3+ ion was the most efficient activator. When the concentration of Dy3+ was 2 mol%, LiBa2B5O10:Dy3+ exhibited a maximum TL output. The kinetic parameter of LiBa2B5O10:0.02Dy was estimated by the peak shape method, for which the average activation energy was 0.757 eV and the frequency factor was 1.50 x 10(7) s(-1). By the three-dimensional (3D) TL spectrum, the TL of the sample was contributed to the characteristic f-f transition of DY3+. The dose-response of LiBa2B5O10:0.02Dy to gamma-ray was linear in the range from 1 to 1000 mGy. In addition, the decay of the TL intensity of LiBa2B5O10:0.02Dy was also investigated.
Resumo:
M2B5O9X: Re(M = Ca, Sr, Ba; X = Cl, Br; Re = Eu, Th) phosphors were synthesized via solid state method. The products were characterized with X-ray powder diffraction and luminescence spectrometer. The luminescent properties as well. as the influences of the matrix composition and other doping ions on the luminescence of the rare earth ions of the co-doped phosphors were investigated. The coexistence of Eu3+, Eu2+ and Th3+ were observed in these matrices. The phenomenon may be explained by the electron transfer theory. The sensitization of Ce3+ ion improves the intensity of emission of Eu2+, and Tb3+. The competition between electron transfer among conjugate rare earth ions and energy migration might be the reasons for the observation. We predict a novel trichromatic phosphor co-doped with Eu3+ Tb3+ in M2B5O9X.
Resumo:
采用铸造或压铸的方法制备了系列Mg-RE 基合金,研究了合金的组织、时效过程和力学性能.结果表明,各种Mg-RE合金的微观组织、相组成以及力学性能既有相似之处也有明显差别,合金的相组成由a-Mg 以及Mg-Gd 基合金中加入其它稀土元素,可有效改善合金的时效硬化特性和提高合金的力学性能.合金性能的提高主要与时效过程中生成的镁稀土化合物强化相有关.
Resumo:
The lightest density of Mg has stimulated renewed interest in Mg based alloys for applications in the automotive, aerospace and communications industries. However, Mg in the pure form has relatively low strength, limited ductility and is susceptible to corrosion. Great efforts have been made to improve the mechanical properties of Mg alloys. Alloying Mg with other elements is one of the most important methods. An important class of Mg alloys is the Mg-Zn-RE system (RE = rare earth elements). In recent few decades, a series of new Mg-Zn-RE system alloys have been obtained, and detailed the structure and mechanical properties of the alloys. In this paper, the structure and mechanical properties of the Mg-Zn-RE alloys have been summarized. It showed that these alloys have high strength and they are prospected to be widely used in the future.
Resumo:
Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3 (RE=Ce, Dy) hydrogen storage electrode alloys have been investigated using XRD, FESEM-EDS, ICP-MS and EIS measurements. The alloy is composed of V-based solid solution phase with a dendritic shape and a continuous C14 Laves phase with a network shape surrounding the dendrite. Pressure-composition isotherm curves indicate that the alloy with Dy addition has a lower equilibrium hydrogen pressure and a wider plateau region. The alloy electrode with Dy addition has higher discharge capacity, while the alloy electrode with Ce addition has better activation and higher cycle stability. The alloy electrode with Ce addition has better electrochemical activity with higher exchange current density (127.5 mA g(-1)), lower charge transfer resistance (1.37 Omega) and lower apparent activation energy (30.5 kJ mol(-1)). The capacity degradation behavior for the alloy electrode is attributed to two main factors: one is the dissolutions of V and Zr element to KOH solution, and another is the larger charge transfer resistance which increases with increasing cycle number.
Resumo:
The relationship between structure, ionic radius and electronegativity and solubility of the various rare-earth elements in Mg was studied. It is found that light RE(La-Sm, Eu, Yb) have more complicated phase relation with Mg but the heavy RE(Gd-Lu, Sc) have the similar crystal structure with magnesium. Also it is found that the less electronegativity difference between Mg and RE is, the more solubility limit of RE in Mg is. The fact of the RE solubility decreased in magnesium with lowering temperature suggests that there is a possibility of Mg supersaturated solid solution formation and it will decomposition during aging. According to the rule, an megnesium alloy with higher strength feature was developed. Their mechanical properties are UTS 347MPa, YTS 290MPa and elongation 12.5% at room temperature.
Resumo:
By using metal nitrates and oxides as the starting materials, Y3Al5O12 (YAG) and YAG: RE3+ (RE: Eu, Dy) powder phosphors were prepared by solid state (SS), coprecipitation (CP) and citrate-gel (CG) methods, respectively. The resulting YAG based phosphors were characterized by XRD and photoluminescent excitation and emission spectra as well as lifetimes. The purified crystalline phases of YAG were obtained at 800degreesC (CG) and 900degreesC (CP and SS), respectively. Great differences were observed for the excitation and emission spectra of Eu3+ and Dy3+ between crystalline and amorphous states of YAG, and their emission intensities increased with increasing the annealing temperature. At an identical annealing temperature and doping concentration, the Eu3+ and Dy3+ showed the strongest and weakest emission intensity in CP- and CG-derived YAG phosphors, respectively. The poor emission intensity for CG-derived phosphors is mainly caused by the contamination organic impurities from citric acid in the starting materials. Furthermore, the lifetimes for the samples derived from CG and CP routes are shorter than those derived from the SS route.
Resumo:
利用水热法合成了 Ca BPO5∶ RE( RE=Eu,Tb)荧光体并测试了其结构和光谱 ,讨论了其发光性质 ,并与高温固相法合成的产物作了对比 .结果表明 ,由于电子转移 ,Eu3+ ,Tb3+ 和 Eu2 + 共存于同一体系中 ,而且 Eu2 +的发射位置从 40 2 nm移至 42 8nm.在双掺杂体系中引入 Ce3+ ,Eu3+ ,Tb3+和 Eu2 +的发光强度均有所增强 ,这可能是 Ce3+ 与 Eu3+ 之间的电子转移及各种稀土离子之间能量传递相互竞争的结果
Resumo:
Y2O3:RE3+ (RE = Eu, Tb, Dy) porous nanotubes were first synthesized using carbon nanotubes as template. The morphology of the coated precursors and porous Y2O3:Eu3+ nanotubes was determined by scanning electron Microscopy (SEM) and transmission electron microscopy (TEM). It was found that the coating of precursors on carbon nanotubes (CNTs) is continuous and the thickness is about 15 nm, after calcinated, the Y2O3:Eu3+ nanotubes are porous with the diameter size in the range of 50-80 nm and the length in micrometer scale. X-ray diffraction (XRD) patterns confirmed that the samples are cubic phase Y2O3 and the photoluminescence studies showed that the porous rare earth ions doped nanotubes possess characteristic emission of Eu3+, Tb3+, and Dy3+. This method may also provide a novel approach to produce other inorganic porous nanotubes used in catalyst and sensors.
Resumo:
Bulk and nanoscale powders of YAG:Re (Re = Ce, Pr, Tb) were synthesized by solid-state and sol-gel method. The changes of spectra and energy level were studied. Compared with the bulk YAG:Re (Re = Ce, Pr, Tb) crystals, the lattice parameter of YAG:Re (Re = Ce, Pr, Tb) nanocrystals decreases. It is also found that the excitation peaks of 5d energy levels shift in nanocrystals. The physical reason for spectral and energy level changes is a comprehensive result from the shift of energy centroid of the 5d orbit, the Coulomb interaction between 4f and 5d electrons and the crystal field splitting of the 5d energy level.
Resumo:
Calcium lanthanide oxyborate doped with rare-earth ions LnCa(4)O(BO3)(3):RE3+ (LnCOB:RE, Ln = Y, La, Gd, RE = Eu, Tb, Dy, Cc) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos' and J phi rgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. J phi rgensen. Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band E-ct were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd ions transfer the energy from itself to Dy.
Resumo:
采用高温固相反应合成了Sr4Al14O25∶RE3+(RE=Eu,Ce,Tb)样品,研究了其中Eu3+,Ce3+和Tb3+的光谱性质,以及Ce3+与Tb3+共掺时的能量传递现象;发现Eu3+,Ce3+和Tb3+占有两个格位,与Eu2+在此基质中的情况相似;在Tb3+的发射光谱中同时观察到了来自5D3与5D4的发射,表明两能级间无辐射跃迁过程不显著;Ce3+对Tb3+有敏化作用。
Resumo:
采用共沉淀法制备了稀土正磷酸盐荧光粉 ( La,Gd) PO4∶ RE3 +( RE=Eu,Tb) .红外光谱分析发现Gd PO4的红外光谱吸收峰与 La PO4一致 ,只是峰位向高波数方向移动 . ( La,Gd) PO4∶ RE3 +的真空紫外光谱特性研究表明 ,Gd3 +在能量传递过程中起中间体作用 .XPS研究揭示 ,La PO4的价带由 O2 -的 2 p能级构成 ,而 Gd PO4的价带则是由 O2 - 的 2 p能级和 Gd3 +的 4 f能级共同构成.
Resumo:
A series of novel indigo light emitting long-lasting phosphors CdSiO3: RE3+ (RE = Y, La, Gd, Lu) was prepared by the conventional high-temperature solid-state method. The XRD, photoluminescence (PL) spectra and afterglow intensity decay were used to characterize the synthesized phosphors. These phosphors emitted indigo light and showed long-lasting phosphorescence. The phosphorescence can be seen with the naked eye in the dark clearly even after the 254-nm UV irradiation have been removed for more than 30 min.