257 resultados para photosynthetic acclimation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

干旱胁迫是全球范围内影响植物生存、生长和分布的重要环境因子。岷江上游干旱河谷区,由于生态环境的脆弱性和长期人类活动的干扰和过度利用,导致植被严重退化,水土流失加剧,山地灾害频繁,干旱化和荒漠化趋势明显。这种趋势若不能遏制,将严重阻碍区域社会经济的快速协调发展,并且威胁成都平原地区的发展和长江中下游地区的生态安全。因而开展干旱河谷生态恢复研究成为解决这些问题的关键。水分匮乏是限制干旱河谷生态恢复的关键因子,在全球气候变化的背景下,干旱胁迫在区域尺度上可能会更加严重,并使干旱河谷的生态环境更加恶化。因此,深入研究干旱河谷乡土植物对干旱胁迫的响应和适应机理,具有非常重要的理论和实践意义。 本论文以岷江上游干旱河谷的三种乡土豆科灌木,白刺花(Sophora davidii)、小马鞍羊蹄甲(Bauhinia faberi var. microphylla)和小雀花(Campylotropics polyantha)理论和实践意义。为研究对象,在人工控制条件下设计了4-5个连续性干旱胁迫处理,系统地研究了灌木幼苗的生长、生物量积累和水分利用效率(WUE)、形态结构和生理过程等对干旱胁迫的反应,揭示了幼苗的干旱适应能力及种间差异。主要研究结论如下: 1) 灌木生长和繁殖对干旱胁迫的反应 在干旱胁迫下,幼苗生长速率显著减小,叶片衰老和脱落比率增大,这些变化随着胁迫强度的增加具有累积效应。叶片比茎对干旱胁迫的反应更敏感。在严重干旱胁迫下,幼苗的有性繁殖被限制,但在中等程度干旱胁迫下,幼苗的有性繁殖能力被提高。 2) 灌木生物量积累及其分配和WUE对干旱胁迫的反应 在干旱胁迫下,灌木各器官的生物量都显著减小,但是生物量的分配侧重于地下部分,使得根茎比在干旱条件下增大。幼苗的耗水量(WU)随着干旱胁迫的增加而显著减少。白刺花和小马鞍羊蹄甲WUE在干旱胁迫下降低;小雀花的WUE在中等干旱胁迫下升高。 3) 灌木叶片结构特征对干旱胁迫反应 白刺花叶片具有较为典型的旱生型结构,而小马鞍羊蹄甲和小雀花则为中生型结构。在1至2年的干旱胁迫下,灌木叶片结构组成未发生本质性的改变,主要是细胞大小的变化。在中等和严重干旱胁迫下,叶肉组织厚度明显减小;并且气孔和表皮细胞面积也显著减小,气孔和表皮细胞密度显著增大;叶肉细胞层数、P/S值、表皮厚度等无显著变化。 4) 灌木对干旱胁迫的生理响应 气体交换参数和叶片相对含水量(RWC)在中等干旱胁迫下发生了明显的改变,而叶绿素荧光参数和光合色素含量在严重干旱胁迫下才发生显著变化。在干旱胁迫下,净光合作用速率(Pn)、气孔导度(gs)和RWC呈下降趋势,而叶片温度(Tl)呈增加趋势,蒸腾速率(Tr)的变化不明显。除了日最大Pn减小以外,干旱胁迫对气体交换参数的日变化无显著影响,但是对光合-光响应曲线有显著的影响,使有效光合时间缩短。在严重干旱胁迫下光系统受到损害而代谢减弱,PSⅡ中心的内禀光能转换效率(Fv/Fm)、量子产量(Yield)、光化学淬灭参数(qP)显著降低,而非光化学淬灭参数(NPQ)明显增加。气孔限制和非气孔限制对Pn的影响与干旱胁迫强度有关。在中度胁迫下,气孔限制起主导作用,在严重胁迫下非气孔限制起主导作用,40% FC水分条件可能是灌木由气孔限制向非气孔限制的转折点。 5) 灌木对干旱胁迫的适应能力及其种间差异 三种灌木对干旱胁迫具有较好的适应能力,即使在20% FC,幼苗未因干旱胁迫III而死亡;80% FC适宜于幼苗生长。白刺花生长速率慢,耗水量较少,具有较强的耐旱和耐贫瘠能力,并具有干旱忍受机制,能够在较干旱的环境中定居和生长。小马鞍羊蹄甲和小雀花,生长快,水分消耗量较大,尤其是小雀花,对干旱胁迫的忍受能力较弱,具有干旱回避机制,因而适宜于在较为湿润的生境中生长。综合分析表明,生长速率较慢的物种抗旱能力较强,其更适宜于作为干旱地区植被恢复物种。 Drought is often a key factor limiting plant establishment, growth and distribution inmany regions of the world. The harsh environmental conditions and long-termanthropogenic disturbance had resulted in habitat destruction in the dry valley ofMinjiang river, southwest China. Recently, it tended to be more severe on the vegetationdegradation, soil erosion and water loss, natural disaster, as well as desertification, whichimpact on regional booming economy and harmonious development, and would be verydangerous to the environmental security in the middle and lower reaches of Yangzi River.Therefore, ecological restoration in the dry valley is one of the vital tasks in China. Waterdeficit is known to affect adversely vegetation restoration in this place. Moreover, in thecontext of climate change, an increased frequency of drought stress might occur at aregional scale in the dry valleys of Minjiang River. The selection of appropriate plantingspecies for vegetation restoration in regard to regional conditions is an important issue atpresent and in further. The research on responses of indigenous species to drought stresscould provide insights into the improvement of the vegetation restoration in the dry valleys of Minjiang River. In this paper, the responses of three indigenous leguminous shrubs, Sophora davidii,Bauhinia faberi var. microphylla and Campylotropics polyantha, to various soil watersupplies were studied in order to assess drought tolerance of seedlings, and to compare interspecific differences in seedlings’ responses to drought stress. The results were as follows: 1 Growth and reproduction of shrubs in response to drought stress Seedling growth reduced significantly while leaf senescence accelerated underdrought stress, the cumulative responses to prolonged drought were found. The capacityfor reproduction was limited by severe drought stress, and improved by moderate droughtstress. Leaf responses were more sensitive than shoot to various water supplies. 2 WUE, biomass production and its partitioning of shrubs in response to drought stress Drought stress reduced significantly the total dry mass and their components ofseedlings, and altered more biomass allocation to root system, showing higher R/S ratiounder drought. Water use (WU) and water-use efficiency (WUE) of both S. davidii and B.faberi var. microphylla declined strongly with drought stress. The WU C. polyantha ofalso declined with drought stress, but WUE improved under moderate drought stress. 3 Anatomical characteristics and ultrastructures of leaves in response to drought stress There were xeromorphic for S. davidii leaves and mesomorphic for B. faberi var.microphylla and C. polyantha at the all water supplies. The foundational changes in leafstructures were not found with drought stress. However, mesophyll thickness, the areas ofstomatal and epidermis reduced slightly while the densities of stomatal and epidermisincreased under severe drought stress. Variations in these parameters could mainly be duoto cell size. Other structures did not displayed significant changes with drought stress. 4 Physiological responses of shrubs to drought stress The gas exchange parameters and leaf relative water content (RWC) were affectedby moderate stress, while chlorophyll fluorescence and chlorophyll content were onlyaffected by severe stress. Drought stress decreased net photosynthesis rate (Pn), stomatalconductance, light-use efficiency and RWC, and increased leaf temperature. Therespiration rates (Tr) were kept within a narrower range than Pn, resulting in aprogressively increased instantaneous water use effiecency (WUEi) under drought stress.Moreover, drought stress also affected the response curve of Pn to RAR, there was adepression light saturation point (Lsat) and maximum Pn (Pnmax) for moderate andsevere stressed seedling. However, diurnal changes of gas exchange parameters did notdiffer among water supplies although maximum daily Pn declined under severe stress.VISevere stress reduced Fv/Fm, Yield and qP while increased NPQ and chlorophyll content.Photosynthetic activity decreased during drought stress period due to stomatal andnon-stomatal limitations. The relative contribution of these limitations was associatedwith the severity of stress. The limitation to Pn was caused mainly by stomatal limitationunder moderate drought stress, and by the predominance of non-stomatal limitation undersevere stress. In this case, 40% FC water supply may be a non-stomatal limitation 5 Interspecific differences in drought tolerance of shrubs Three shrubs exhibited good performance throughout the experiment process, evenif at 20% FC treatment there were no any seedlings died, 80% FC water supply wassuitable for their establishment and growth. S. davidii minimized their water loss byreducing total leaf area and growth rate, as well as maintained higher RWC and Pncompared to the other two species under drought stress, thus they might be more tolerantto the drought stress than the other two species. On the contrary, it was found that C.polyantha and B. faberi var. microphylla had higher water loss because of their stomatalconductance and higher leaf area ratios. They reduced water loss with shedding theirleaves and changing leaf orientation under drought stress. Based on their responses, thestudied species could be categorized into two: (1) S. davidii with a tolerance mechanismin response to drought stress; (2) C. polyantha and B. faberi var. microphylla withdrought avoidance mechanism. These results indicated that slow-growing shrub speciesare better adapted to drought stress than intermediate or fast-growing species in present orpredicted drought conditions. Therefore, selecting rapid-growing species might leavethese seedlings relatively at a risk of extreme drought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta). Herein, we documented these changes in this species of red algae. Results: In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks). During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII) activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Conclusions: Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within the young germling, the hetero-distribution of PSII photosynthetic capabilities might be due to the differences in cell functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiological data from extreme habitat organisms during stresses are vital information for comprehending their survival. The intertidal seaweeds are exposed to a combination of environmental stresses, the most influential one being regular dehydration and re-hydration. Porphyra katadai var. hemiphylla is a unique intertidal macroalga species with two longitudinally separated, color distinct, sexually different parts. In this study, the photosynthetic performance of both PSI and PSII of the two sexually different parts of P. katadai thalli during dehydration and re-hydration was investigated. Under low-grade dehydration the variation of photosystems of male and female parts of P. katadai were similar. However, after the absolute water content reached 42%, the PSI of the female parts was nearly shut down while that of the male parts still coordinated well and worked properly with PSII. Furthermore, after re-hydration with a better conditioned PSI, the dehydrated male parts were able to restore photosynthesis within 1 h, while the female parts did not. It is concluded that in P. katadai the susceptibility of photosynthesis to dehydration depends on the accommodative ability of PSI. The relatively lower content of phycobiliprotein in male parts may be the cause for a stronger PSI after severe dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the photosynthetic performances of Enteromorpha prolifera thalli collected from the surface and bottom of the sea of Qingdao sea area were studied with chlorophyll fluorescence and oxygraph technology. The samples with the highest photosynthetic activity among their kinds, the floating thalli from the sea surface of the south of the Qingdao Olympic Sailing Center and the sedimentary thalli from the mud surface of the bottom Tuandao bay, were chosen as representatives of surface thalli and bottom thalli, respectively. The results showed that the maximal PSII quantum yield of the floating thalli was significantly lower than the normal level although their photosynthetic activities were relatively high; the photosynthetic potential of the thalli form the mud surface was extremely low. Thus, it is indicated that the floating thalli are seriously stressed by their environment and the thalli from the mud surface are already dead or are dying. On the other hand, the results of the laboratory cultivation showed that the sedimentary thalli cannot regain normal photosynthetic activity even under normal illumination conditions. Thus, the thalli from the mud surface cannot become reproductive source of the alga even if they can reach sea surface again. Therefore, a preliminary conclusion can be reached that, up to mid-July 2008, the environmental conditions of the Qingdao sea area are not suitable for the growth of the alga E. prolifera and for this reason the biomass of E. prolifera, in the area, could be declining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through an acclimation period of 10 days, compared to white light, the maximal net photosynthetic rates were significantly higher for gametophytes of Undaria pinnatifida cultivated under blue light (400-500 nm), and were lower under red light (600-700 nm). Chlorophyll c and the carotenoid content of gametophytes were similar under blue light and red light but were much lower under white light. The growth rate of female gametophytes under blue light was higher than that under other lights, and the growth rate of male gametophytes showed little variation with respect to blue and white light. Male and female gametophytes were mixed together to form sporophytes under white, blue and red light. After approximately 5 days, 50% gametophytes became fertile under blue and white light, but remained vegetative under red light after 10 days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PS I, PS II and light-harvesting complexes (LHC) in oxygen evolving photosynthetic organisms were reviewed. These organisms include cyanobacteria, red algae, brown algae, diatoms, chrysophytes, dinophytes, xanthophytes, crypophytes, green algae and green plants. The diversity of pigment-protein complexes that fuel the conversion of radiant energy to chemical bond energy was highlighted, and the evolutionary relationships among the LHC structural polypeptides and the characteristics of the fluorescence emission of PS I at 77 K was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyunsaturated fatty acids (PUFAs) are important components of infant and adult nutrition because they serve as structural elements of cell membranes. Fatty acid desaturases are responsible for the insertion of double bonds into pre-formed fatty acid chains in reactions that require oxygen and reducing equivalents. In this study, the genome-wide characterization of the fatty acid desaturases from seven eukaryotic photosynthetic microalgae was undertaken according to the conserved histidine-rich motifs and phylogenetic profiles. Analysis of these genomes provided insight into the origin and evolution of the pathway of fatty acid biosynthesis in eukaryotic plants. In addition, the candidate enzyme from Chlamydomonas reinhardtii with the highest similarity to the microsomal Delta 12 desaturase of Chlorella vulgaris was isolated, and its function was verified by heterologous expression in yeast (Saccharomyces cerevisiae).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gracilaria lemaneiformis Bory is an economically important alga that is primarily used for agar production. Although tetraspores are ideal seeds for the cultivation of G. lemaneiformis, the most popular culture method is currently based on vegetative fragments, which is labor-intensive and time-consuming. In this study, we optimized the conditions for tetraspore release and evaluated the photosynthetic activities of different colonies formed from the branches of G. lemaneiformis using a PAM (pulse-amplitude-modulated) measuring system. The results showed that variations in temperature and salinityhad significant effects on tetraspore yield. However, variations in the photon flux density (from 15 mu mol m(-2) s(-1) to 480 mu mol m(-2) s(-1)) had no apparent effect on tetraspore yield. Moreover, the PAM-parameters Y(I), Y(II), ETR(I), ETR(II) and F (v)/F (m) of colonies formed from different branches showed the same trend: parameter values of first generation branches > second generation branches > third generation branches. These results suggest that the photosynthetic activities of different colonies of branches changed with the same trend. Furthermore, photosynthesis in G. lemaneiformis was found to be involved in vegetative reproduction and tetraspore formation. Finally, the first generation branches grew slowly, but accumulated organic compounds to form large numbers of tetraspores. Taken together, these results showed that the first generation branches are ideal materials for the release of tetraspores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photosynthetic performances of regenerated protoplasts of Bryopsis hypnoides, which were incubated in seawater for 1, 6, 12, and 24 h, were studied using chlorophyll (Chl) fluorescence and oxygen measurements. Results showed that for the regenerated protoplasts, the pigment content, the ratios of photosynthetic rate to respiration rate, the maximal photosystem II (PSII) quantum yield (F-v/F-m), and the effective PSII quantum yield (I broken vertical bar(PSII)) decreased gradually along with the regeneration progress, indicated that during 24 h of regeneration there was a remarkable reduction in PSII activity of those newly formed protoplasts. We assumed that during the cultivation progress the regenerated protoplasts had different photosynthetic vigor, with only some of them able to germinate and develop into mature thalli. The above results only reflected the photosynthetic features of the regenerated protoplasts at each time point as a whole, rather than the actual photosynthetic activity of individual aggregations. Further investigation suggested a relationship between the size of regenerated protoplasts and their viability. The results showed that the middle-sized group (diameter 20-60 mu m) retained the largest number of protoplasts for 24 h of growth. The changes in F-v/F-m and I broken vertical bar(PSII) of the four groups of differently sized protoplasts (i.e. < 20, 20-60, 60-100, and > 100 mu m) revealed that the protoplasts 20-60 mu m in diameter had the highest potential activity of the photosynthetic light energy absorption and conversion for several hours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments on growth characters and ecological functions of the macroalgae Gracilaria lemaneiformis, collected from south China, were conducted in polyculture areas of kelp and filter-feeding bivalve in Sanggou Bay in Weihai City, Shandong, in north China from May 2002 to May 2003. The results of 116 days cultivation showed that the average wet weight of alga increased 89 times from 0.1 to 8.9 kg rope(-1), with an average specific growth rate ( based on wet weight) of 3.95% per day. The most favorable water layer for its growth was 1.0 - 1.8 m below the surface in July and August, with an average specific growth rate of 8.2% per day in 30-day experiments. Photosynthetic activity changed seasonally, with an average of 7.3 mg O-2 g dw(-1) h(-1). The maximum rate (14.4 mg O-2 g dw(-1) h(-1)) was recorded in July, or 19.3 mg CO2 g dw(-1) h(-1), while the minimum (0.40 mg CO2 g dw(-1) h(-1)) was in April. This study indicated that the culture of G. lemaneiformis is an effective way to improve water quality where scallops are cultivated intensively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photosynthetic pathway of plant species collected at Menyuan, Henan, and Maduo sites, east of Tibetan Plateau, China, during the growing season were studied using stable carbon isotopes in leaves. The 232 samples leaves analyzed belonged to 161 species, 30 families, and 94 genera. The delta(13)C values (from -24.6 to -29.2 %o) indicated that all the considered species had a photosynthetic C-3 pathway. The absence of plant species with C-4 photosynthetic pathway might be due to the extremely low air temperature characterizing the Tibetan Plateau. The average delta(13)C value was significantly (p < 0.05) different between annuals and perennials at the three considered study sites. Hence the longer-lived species had greater water-use efficiency (WUE) than shorter-lived species, that is, longer-lived species are better adapted to the extreme environmental conditions of the Tibetan Plateau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Qinghai-Tibet Plateau is characterized by extremely high radiation, which may induce down-regulation of photosynthesis in plants living in this alpine ecosystem. To clarify whether photoinhibition occurs in the alpine environment and to discern its underlying mechanisms, we examined photosynthetic gas exchange and fluorescence emission in response to the changes in photosynthetic photon flux density (PPFD) and leaf temperature under natural regimes for two herbaceous species: prostrate Saussurea superba and erect-leaved Saussurea katochaete from altitude 3250 m on the Qinghai-Tibet Plateau. S. superba intercepted a higher maximum PPFD and experienced much higher leaf temperature than the erect-leaved S. katochaete. S. superba exhibited a much higher light saturation point for photosynthesis than S. katochaete. Under controlled conditions, the former species had higher CO2 uptake rates and neither species showed obvious photosynthetic down-regulation at high PPFD. Under natural environmental conditions, however, apparent photoinhibition, indicated by reduced electron transport rate (ETR), was evident at high PPFD for both species. After a night frost, the photochemistry of S. katochaete was depressed markedly in the early morning and recovered by mid-day. After a frost-free night, it was high in the morning and low at noon due to high radiation. S. superba did not respond to the night frost in terms of daytime photochemical pattern. In both species, photochemical depression was aggravated by high leaf temperature and the erect species was more sensitive to high temperature. This study suggests that the high radiation on the Qinghai-Tibet Plateau is likely to induce rapidly reversible photoinhibition, which is related closely to plant architecture. Photochemistry in the prostrate species seems able to tolerate higher PPFD, without obvious suppression, than the erect species. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以5个不同抗寒性小麦品种(不抗寒的春小麦京771,抗寒性中等的郑州741和济南13号,以及强抗寒性冬小麦农大139和燕大1817)为材料,对其在抗寒锻炼过程中所发生的可溶性蛋白及膜蛋白组分的变化进行了电泳图谱的分析。主要结果如下: 1、可溶性蛋白质电泳图谱的分析表明:人工低温锻炼20天后,在不同品种中新合成的多肽分子量分别为:郑州741是28,73 KD;济南13号是24,28和73 KD;农大139是28,60,65和68 KD;田间抗寒锻炼的燕大1817为15,28,51,60,65和68 KD。 2、不同抗寒性品种经人工低温锻炼20天后,新合成的膜多肽分别是:郑州741为30和68 KD;济南13号为30,58,68和81 KD;农大139为18,21,27,32和56 KD。田间锻炼的冬小麦燕大1817为21,29,36,43和83 KD。 3、脱锻炼后,抗寒特异性的多肽及与抗寒相关的膜多肽发生减少或完全消失。 4、春小麦在低温锻炼后,抗寒力不显著提高,不产生抗寒特异蛋白质。此外,膜多肽的变化也较少。 以上结果进一步揭示和证实,在小麦的抗寒锻炼过程中无论是可溶性蛋白还是膜蛋白均确实有抗寒特异性蛋白的新合成,并在各品种间表现出某些共同的特异性多肽,这些新合成的多肽与品种的抗寒性存在密切的关系,品种愈抗寒,特异多肽的种类愈多。这些结果进一步证明,植物抗寒性是由多基因控制的。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

小麦旗叶的光合产物是其籽粒碳水化合物的主要来源,因此如何提高旗叶的光合能力从而提高小麦产量一直是小麦研究的热点。但是以往对高产小麦旗叶的研究主要集中在光合功能和生理生化指标等方面,很少涉及其结构与功能的联系,以及对亲本与子代的旗叶进行对比观察。本文以冬小麦亲本小偃54 、8602及其子代小偃81(高产品种)灌浆期的旗叶为材料,应用细胞离析法、组织切片和荧光显微技术等,对旗叶中叶肉细胞形态、叶绿体数目、叶片厚度、维管束数目和面积等进行了比较观察和测定,旨在探讨小麦旗叶结构与其光合效率的关系。研究结果表明,与亲本小偃54、8602相比,子代小偃81的叶片较厚,横切面内中央大维管束的周长与面积较大;高环数叶肉细胞所占比例、叶肉细胞的周长及其平面面积和细胞内叶绿体的数目等均大于亲本。由此可见,通过小麦品种的改良确实能使其旗叶的结构与光合细胞发生了明显的变化,从而为植物细胞结构和功能的密切关系提供了有力的证据;同时也为作物改良育种提供了又一种新的育种目标。   小麦非叶器官之一的芒,对其结构与光合特性关系的研究尚不够深入和广泛。本实验以具芒小麦高产耐旱品种京411籽粒不同发育时期的芒及旗叶为材料,对其叶绿体结构、放氧速率和磷酸烯醇式丙酮酸羧化酶(PEPCase EC 4.1.1.31)的活性进行了比较观察和测定。超微结构显示,从抽穗期开始,芒和旗叶中的叶绿体基粒及其垛叠度均有增加,之后由灌浆末期开始,叶绿体的膜系统开始逐渐解体。通过放氧速率的测定表明,在芒和旗叶中,光合速率在前几个时期呈上升趋势,随着器官的衰老逐渐下降,但是,旗叶放氧速率的下降比芒中更早。另外,芒的PEPCase活性在籽粒发育的整个过程中均高于旗叶,其中以籽粒干物质形成末期尤为显著。因此,芒对高产小麦籽粒的形成,特别是在干物质形成的后期起着更为重要的作用。