151 resultados para phenolic acids
Resumo:
The effects of both organically modified montmorillonite (OMMT) and Ni2O3 on the carbonization of polypropylene (PP) during pyrolysis were investigated. The results from TEM and Raman spectroscopy showed that the carbonized products of PP were mainly multiwalled carbon nanotubes (MWNTs). Surprisingly, a combination of OMMT and Ni2O3 led to high-yield formation of MWNTs. X-ray powder diffraction (XRD) and GC-MS were used to investigate the mechanism of this combination for the high-yield formation of MWNTs from PP. Bronsted acid sites were created in degraded OMMT layers by thermal decomposition of the modifiers. The resultant carbenium ions play an important role in the carbonization of PP and the formation of MWNTs. The degradation of PP was induced by the presence of carbenium ions to form predominantly products with lower carbon numbers that could be easily catalyzed by the nickel catalyst for the growth of MWNTs. Furthermore, carbenium ions are active intermediates that promote the growth of MWNTs from the degradation products with higher carbon numbers through hydride-transfer reactions. The XRD measurements showed that Ni2O3 was reduced into metallic nickel (Ni) in situ to afford the active sites for the growth of MWNTs.
Resumo:
The extraction of zinc(II) and cadmium(II) from a chloride medium by mixtures of primary amine N1923 and organophosphorus acids [di-(2-ethylhexyl)-phosphoric acid, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH/EHP), isopropyl phosphonic acid 1-hexyl-4-ethyloctyl ester, bis(2,4,4-trimethylpentyl) phosphinic acid, bis(2,4,4-trimethylpentyl) monothiophosphinic acid, and bis(2,4,4-trimethylpentyl) dithiophosphinic acid] has been studied in the present paper. Results show that only the mixtures of N1923 + HEH/EHP and N1923 + Cyanex272 have synergistic effects on zinc(II), but the other mixtures have no evident synergistic effects. All six mixtures have no evident synergistic effects on cadmium(H). A possible explanation of the different extraction abilities is given based on the structure of the extractants. Furthermore, the possibilities of separating zinc(II) and cadmium(II) with these mixtures are investigated according to the extractabilities. It is possible to separate Zn2+ from bulk cadmium with N1923 and HEH/EHP mixtures and separate Cd2+ from bulk zinc with N1923 and Cyanex301 mixtures.
Resumo:
The partitioning behavior of four amino acids, cysteine, phenylalanine, methionine, and lysine in 15 aqueous two-phase systems (ATPSs) with different polyethylene glycol (PEG) molecular weights and phosphate buffers has been studied in the present paper. The phase diagrams of the systems are investigated together with the effect of the PEG molecular weight and pH of the phosphate solutions. The composition of these systems and some parameters such as density and refractive index are determined. The influences of salts in ATPSs, side chain structure of the amino acids, pH of ATPSs, and the PEG molecular weight on the distribution ratios of the amino acids have been studied. This work is useful for the purification of amino acids and the separation of some proteins whose main surface exposed amino acid residues are these four amino acids, respectively.
Resumo:
A new method for syntheses of hyperbranched poly(ester-amide)s from commercially available A(2) and CBx type monomers has been developed on the basis of a series of model reactions. The aliphatic and semiaromatic hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by in situ thermal polycondensation of intermediates obtained from dicarboxylic acids (A(2)) and multihydroxyl primary amines (CBx) in N,N-dimethylformamide. Analyses of FTIR, H-1 NMR, and C-13 NMR spectra revealed the structures of the polymers obtained. The MALDI-TOF MS of the polymers indicated that cyclization side reactions occurred during polymerization. The hyperbranched poly(ester-amide) s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy. The DBs of the polymers were determined to be 0.38-0.62 by H-1 NMR or quantitive C-13 NMR and DEPT 135 spectra. These polymers exhibit moderate molecular weights, with broad distributions determined by size exclusion chromatography ( SEC), and possess excellent solubility in a variety of solvents such as N, N- dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, and ethanol, and display glass-transition temperatures (T(g)s) between -2.3 and 53.2 degrees C, determined by DSC measurements.
Resumo:
Aristolochic acids (AAs) are the main bioactive ingredients in the most of Aristolochia plants, which are used to make dietary supplements, slimming pills and Traditional Chinese Medicines (TCMs). Excessive ingestion of AAs can lead to serious nephropathy. Therefore, quantitative analysis and quality control for the plants containing AAs is of great importance. In this paper, capillary electrophoresis (CE) with electrochemical detection (ED) at a 33 mu m carbon fiber microdisk electrode (CFE) has been applied to detect AA-I and AA-II in Aristolochia plants. Under the optimum conditions: detection potential at 1.20 V, 2.0 x 10(-2) mol L-1 phosphate buffer solution (PBS) (pH 10.0), injection time 25 s at a height of 17 cm and separation voltage at 12.5 kV, the AA-I and AA-II were baseline separated within 5 min. Low detection limits for AA-I and AA-II were 4.0 x 10(-8) mol L-1 and 1.0 x 10(-7) mol L-1, respectively. Wide linear ranges were from 4.0 x 10(-8) mol L-1 to 1.9 x 10(-5) mol L-1 and 1.0 X 10(-7) mol L-1 to 5.0 x 10(-5) mol L-1 for AA-I and AA-II, respectively. The proposed method has been successfully applied to analyze AAs contents in plant extracts. The results indicated that the contents of AAs in each part of Aristolochia debilis Sieb. Et Zucc.
Resumo:
A novel method for the fabrication of gold nanoparticle multilayer films based on the covalent-bonding interaction between boronic acid and polyols, poly(vinyl alcohol) (PVA), was developed. The multilayer buildup was monitored by UV-vis absorbance, spectroscopy, which showed a linear increase of the film absorbance with the number of adsorbed Au layers and indicated the stepwise and uniform assembling process. The atomic force microscopy (AFM) image showed that a compact gold multilayer thin film was successfully assembled. The residual boronic acid group on the surface of thin film Could incorporate glycosylated-protein horseradish peroxidase (HRP), and good catalytic activity for H2O2 could be observed.
Resumo:
Facilitated ion transfer reactions of 20 amino acids with di.benzo-18-crown-6 (DB18C6) at the water/1,2-dichloroethane (W/DCE) interfaces supported at the tips of micro- and nano-pipets were investigated systematically using cyclic voltammetry. It was found that there were only 10 amino acids, that is, Leu, Val, Ile, Phe, Trp, Met, Ala, Gly, Cys, Gln (in brief), whose protonated forms as cations can give well-defined facilitated ion transfer voltammograms within the potential window, and the reaction pathway was proven to be consistent with the transfer by interfacial complexation/dissociation (TIC/TID) mechanisms. The association constants of DB 18C6 with different amino acids in the DCE (beta(0)), and the kinetic parameters of reaction were evaluated based on the steady-state voltammetry of micro- or nano-pipets, respectively The experimental results demonstrated that the selectivity of complexation of protonated amino acid by DB18C6 compared with that of alkali metal cations was low, which can be attributed to the vicinal effect arising from steric hindrance introduced by their side group and the steric bulk effect by lipophilic stabilization.